Dr. Liu Ying | Engineering | Research Excellence Award

Dr. Liu Ying | Engineering | Research Excellence Award

East China Jiaotong University | China

Dr. Liu Ying is a dedicated researcher and lecturer in the field of mechanical and vehicle engineering, recognized for her growing scholarly contributions and interdisciplinary expertise that bridges intelligent control, computer vision, image detection, and reinforcement learning. With an academic foundation shaped through rigorous training in mechanical design, manufacturing, automation, and advanced mechanical engineering, she has developed a strong research trajectory supported by both theoretical depth and applied innovation. Her scholarly record reflects an emerging yet impactful academic presence, demonstrated through 6 published documents, 15 citations, and an h-index of 2, highlighting the relevance and early influence of her work within the scientific community. Dr. Liu’s research explores visual perception, target localization, and intelligent analysis, forming an integrated framework that advances algorithmic design and real-world technical applications. She has contributed to multiple scientific research projects, including national-level initiatives and collaborative programs with substantial funding volumes, underscoring her active role in large-scale, multidisciplinary research environments. Her output also includes seven journal publications indexed in major scholarly databases and more than twenty patents that showcase her drive for innovation and technological development. Beyond academic publishing, she has completed numerous consulting and industry-related projects, translating her research insights into practical solutions for engineering challenges. As a young academic, she has already taken lead roles in talent programs and continues to expand her impact by addressing key problems in vehicle engineering and intelligent systems. With a professional approach grounded in scientific rigor and a commitment to future-oriented advancements, Dr. Liu Ying exemplifies the qualities of an emerging research leader whose contributions continue to shape the evolving landscape of intelligent engineering and applied computational methodologies.

Citation Metrics (Scopus)

25
20
15
10
0

Citations
15

Documents
6

h-index
2

Citations

Documents

h-index


View Scopus Profile

Featured Publication

Dr. Jie Li | Engineering |Editorial Board Member

Dr. Jie Li | Engineering |Editorial Board Member

Beijing University of Chemical Technology | China

Dr. Jie Li is an emerging and highly promising researcher in the field of power engineering, engineering thermophysics, and advanced composite materials, known for his strong technical foundations, innovative thinking, and growing academic influence. He is currently affiliated with Beijing University of Chemical Technology, where he conducts cutting-edge research on composite material lightweight structural design, multilayer heat conduction mechanisms, torsional lamination technology, and anisotropic thermal functional materials. Dr. Li focuses on establishing high-performance lightweight structural systems through multilayer thermal resistance modelling, providing scientific solutions for next-generation energy systems, aerospace materials, and high-efficiency heat-transfer structures. His research achievements include 25 published academic documents, which have collectively received 661 citations across 597 documents, reflected by an impressive h-index of 16, underscoring his expanding academic visibility and contribution to the materials and thermal sciences community. Dr. Li is the author of impactful research such as Lamination Magic for Heat Transfer: Anisotropic Functional Composites Based on Multilayer Thermal Conductivity Modeling, demonstrating his expertise in coupling theoretical modelling with experimental validation to enhance material performance. In addition to his research accomplishments, Dr. Li has received multiple academic honors, including doctoral scholarships, national graduate scholarships, and merit-based awards, recognizing his excellence, dedication, and leadership in graduate studies. He possesses strong capabilities in mechanical design, manufacturing technology, 3D modelling, finite-element analysis, and simulation software, being proficient in SolidWorks, AutoCAD, 3D-Deform, ANSYS, Origin, and integrated digital research tools. Dr. Li’s innovative approach to composite structural engineering, combined with his technical expertise and consistent research output, positions him as a rising scholar capable of making long-term contributions to high-performance materials engineering and thermophysical system design.

Profile: Orcid | Scopus

Featured Publications

Li, J. (2025). HLDP nano-assembly boosts monosultap insecticidal activity against Asian corn borers through enhanced neurotoxicity and energy depletion. Pesticide Biochemistry and Physiology.

Li, J. (2025). Naphthalimide-conjugated spiropyran: Dual-state emission and photo-responsive dynamic fluorescence color for information encryption application. Advanced Functional Materials.

Assist. Prof. Dr. Shiyu Wei | Engineering | Editorial Board Member

Assist. Prof. Dr. Shiyu Wei | Engineering | Editorial Board Member

Xinjiang University | China

Assist. Prof. Dr. Wei Shiyu is an accomplished and forward-thinking researcher in advanced manufacturing, ultrasonic vibration–assisted machining, and laser processing, recognized for his scientific rigor, engineering innovation, and growing international influence. He serves as an Assistant Professor at the College of Mechanical Engineering, Xinjiang University, where he contributes to high-level teaching, research, and postgraduate supervision. Dr. Wei earned his Doctor of Engineering degree from Northeastern University, building strong foundations in smart manufacturing, machining science, and precision engineering. His research focuses on 3D ultrasonic vibration-assisted turning, microstructure evolution in machining, surface integrity optimization, material migration mechanisms, and hybrid energy-field manufacturing, bridging theoretical modeling with experimental validation. Dr. Wei has produced impactful scholarship reflected in 10 published documents, 88 citations across 58 documents, and a steadily rising h-index of 6, underscoring the influence and relevance of his work within the advanced manufacturing research community. He serves as principal investigator and key participant on multiple competitive scientific projects, including studies on ultrasonic vibration–assisted in situ ceramic coating formation, CO₂ pipeline flow assurance systems, hydrogen extraction technologies, and composite flexible cutting under electric–thermal–mechanical coupling fields. His work demonstrates strong interdisciplinary integration across mechanical engineering, materials science, green manufacturing, and energy processing. Dr. Wei has published in international journals such as Precision Engineering, Measurement, Ultrasonics, Machining Science and Technology, and The International Journal of Advanced Manufacturing Technology, where his studies on ultrasonic vibration–assisted machining are widely recognized for advancing efficient, high-precision, and low-damage processing of difficult materials. In addition to journal contributions, he holds officially granted patents, further highlighting his applied engineering impact. Through academic leadership, innovative research, and persistent pursuit of excellence, Assist. Prof. Dr. Wei Shiyu stands out as a rapidly emerging scholar in mechanical engineering and a compelling candidate for prestigious recognitions and research awards.

Profile: Scopus

Featured Publications

Wei, S., Zou, P., Fang, L., & Duan, J. (2023). Theoretical and experimental study of 3D ultrasonic vibration-assisted turning driven by two actuators. Measurement, 0263–2241, 112865.

Wei, S., Zou, P., Fang, L., & Duan, J. (2023). Microstructure evolution of medium carbon steel during heat-assisted 3D ultrasonic vibration-assisted turning. Ultrasonics, 107129.

Wei, S., Zou, P., Zhang, J., & Duan, J. (2022). Theoretical and experimental research on 3D ultrasonic vibration-assisted turning driven by a single actuator. The International Journal of Advanced Manufacturing Technology, 121, 1173–1190.

Wei, S., Zou, P., Duan, J., & Usman, M. M. (2022). Study on surface roughness model of 3D ultrasonic vibration-assisted turning driven by a single actuator. The International Journal of Advanced Manufacturing Technology, 123, 4413–4426.

Ms. Runjie Wang | Photogrammetry and Remote Sensing | Best Researcher Award

Ms. Runjie Wang | Photogrammetry and Remote Sensing | Best Researcher Award

Beijing University of Civil Engineering and Architecture | China

Ms. Runjie Wang is an associate researcher specializing in photogrammetry and remote sensing, with a focus on high-precision and high-dynamic micro-deformation monitoring of urban infrastructure. Serving concurrently as Deputy Director of the Research Institute of Science and Technology Development at Beijing University of Civil Engineering and Architecture and Secretary of the Undergraduate Party Branch of Remote Sensing Science, she also contributes internationally as Secretary of the International Science Council GeoUnions Standing Committee on Disaster Risk Reduction. Her research centers on non-contact, high-frequency, and ultra-high-precision monitoring using ground-based SAR, addressing long-standing challenges in atmospheric disturbance correction, noise separation, and micro-deformation signal reliability for existing bridges and high-rise buildings. Through innovative atmospheric parameter optimization techniques, progressive denoising strategies, and a high-dynamic structural damage detection model based on instantaneous frequency–total energy integration, she has advanced methods for precise decomposition of linear and nonlinear vibrations and significantly improved the credibility of structural health assessments. Ms. Wang has independently led multiple research projects, including a national natural science foundation youth program, open laboratory funding, institutional capacity-building grants, and industry collaborations, contributing to a cumulative funding portfolio of over half a million RMB. Her academic output includes 17 peer-reviewed publications in journals such as Measurement, ISPRS International Journal of Geo-Information, and Remote Sensing, with 12 SCI papers as first or corresponding author, as well as three granted invention patents and one monograph. Her scholarly influence is evidenced by 90 citations, 77 citing documents, 35 total publications, and an h-index of 6, reflecting the growing recognition of her contributions to urban infrastructure monitoring and remote sensing methodology. A recipient of a competitive young talent support honor, Ms. Wang continues to advance high-dynamic remote sensing technologies that enhance the safety, reliability, and cost-effectiveness of critical urban infrastructure monitoring.

Profile: Scopus

Featured Publications

 Subway line settlement monitoring and analysis based on PS-InSAR technology and wavelet packet decomposition

 Phase noise model construction and denoising method for dynamic infrastructure measurement in 5G base station

 Real-time bridge dynamic deflection monitoring using 5G-integrated sensing and communication

Meng Li | Engineering | Best Researcher Award

Dr. Meng Li | Engineering | Best Researcher Award 

Li Meng is an Assistant Researcher at Northwestern Polytechnical University specializing in ultra-fast laser processing of advanced engineering materials. His research focuses on developing low-damage, high-precision processing technologies, particularly for turbine film cooling holes. He has contributed to national and university-level projects, secured multiple patents, and published in leading journals such as the Journal of Materials Processing Technology and Journal of Manufacturing Processes. Collaborating with top institutions, Li Meng continues to advance innovations in precision manufacturing, bridging academic research with industrial applications.

Dr. Meng Li | Northwestern Polytechnical University | China

Profiles

SCOPUS

ORCID

Education

  • Li Meng pursued higher studies with a strong focus on advanced manufacturing and materials processing. Throughout the academic journey, he developed expertise in laser processing technologies and the application of engineering principles to complex material challenges. His education provided him with a solid foundation in mechanical and aeronautical sciences, equipping him with both theoretical knowledge and hands-on skills to contribute effectively to high-level research in ultra-fast laser processing

Experience

  • Li Meng has dedicated his professional career to research in the field of ultra-fast laser processing of advanced engineering materials. He has actively contributed to major national projects and university-led innovations that focus on improving the quality and efficiency of laser-based manufacturing processes. His experience extends beyond academic work, as he has also contributed to consultancy and industry-based projects, bridging the gap between theoretical research and industrial application.

Awards and Recognition

  • Through consistent innovation and impactful research, Li Meng has earned recognition within the academic and professional community. His contributions to advancing low-damage laser processing techniques and collaborative works with esteemed institutions have strengthened his reputation as a promising researcher. The successful execution of funded projects and achievements in securing patents further reflect his ability to transform scientific ideas into practical outcomes that have long-term value.

Skills and Expertise

  • Li Meng has developed strong skills in ultra-fast laser processing, advanced materials engineering, and precision manufacturing. He demonstrates expertise in applying innovative approaches to reduce material damage while achieving high precision in processing. His collaborative spirit and ability to work across multidisciplinary teams further enhance his effectiveness in research. Additionally, his skills extend to project execution, problem-solving, and translating research into practical engineering solutions.

Research Focus 

  • Li Meng’s research primarily revolves around ultra-fast laser processing of advanced engineering materials. He has concentrated on optimizing processing methods to achieve superior quality and minimal material damage. His focus on turbine film cooling hole technology highlights his contribution to the aerospace and energy sectors, where precision and durability are essential. His work is paving the way for high-performance material applications that meet the demanding requirements of modern engineering industries.

Publications

Creep life prediction of Ni‐based single‐crystal superalloy plate with film‐cooling holes using a modified critical distance method based on the improved weight function
Authors: Ping Wang, Zhixun Wen, Meng Li, Guangxian Lu, Zhenwei Li, Pengfei He
Journal: Fatigue & Fracture of Engineering Materials & Structures

High temperature creep property of a novel porous double layer cooling structure for gas turbine blades
Authors: Ping Wang, Meng Li, Zhixun Wen, Chengjiang Zhang, Zhenwei Li, Pengfei He
Journal: Engineering Fracture Mechanics

Femtosecond laser high-quality drilling of film cooling holes in nickel-based single superalloy for turbine blades with a two-step helical drilling method
Authors: Meng Li, Zhi-xun Wen, Ping Wang, Yu-xing Liu, Zhen-wei Li, Zhu-feng Yue
Journal: Journal of Materials Processing Technology

Oxidation behavior of a nickel-based single crystal superalloy at 1100° C under different oxygen concentration
Author: Meng Li
Journal: Journal of Materials Science

Effect of aging heat treatment on microstructure of Ni-based single crystal superalloys
Authors: Zhengxing Feng, Zhixun Wen, Meng Li, Yanchao Zhao, Zhufeng Yue
Journal: AIP Advances

Conclusion

  • Li Meng stands out as a researcher who combines technical knowledge, innovative thinking, and practical application in the field of ultra-fast laser processing. His dedication to advancing precision manufacturing technologies and his strong collaborative network make him a valuable contributor to both academic and industrial research. With continued efforts, he is well-positioned to make further breakthroughs that will strengthen the future of advanced material processing and laser-based manufacturing technologies.

Zhen Guo | Engineering | Best Researcher Award

Dr. Zhen Guo | Engineering | Best Researcher Award

Zhen Guo is a doctoral student at the School of Transportation and Logistics Engineering, Wuhan University of Technology. His research focuses on deep learning, fault diagnosis, and intelligent monitoring of rotating machinery. He specializes in anomaly detection, imbalance learning, few-shot learning, and transfer learning, applying these methods to improve reliability in robotics and mechanical systems. Zhen has served as a reviewer for several high-impact journals and conferences, reflecting his active engagement in the research community and his expertise in intelligent diagnostics and engineering applications.

Dr. Zhen Guo | Wuhan University of Technology | China

Profile

SCOPUS ID

ORCID ID

Education

  • Zhen Guo is currently pursuing doctoral studies at Wuhan University of Technology in the School of Transportation and Logistics Engineering, where his research is focused on cutting-edge developments in intelligent systems and mechanical diagnostics. Prior to this, he completed his master’s studies at Zhengzhou University of Light Industry, laying a strong foundation in engineering and applied technologies. His academic path demonstrates a consistent focus on integrating deep learning with real-world engineering challenges.

Experience

  • Zhen has actively contributed to the academic community as a peer reviewer for several internationally recognized journals and conferences. His review work spans prestigious platforms such as Advanced Engineering Informatics, Knowledge-Based Systems, Engineering Applications of Artificial Intelligence, ISA Transactions, Measurement, Measurement Science and Technology, Journal of Mechanical Science and Technology, Engineering Research Express, and Scientific Reports. His peer review contributions highlight his depth of knowledge and his commitment to advancing research quality in the fields of mechanical systems and artificial intelligence.

Awards and Recognition

  • Zhen’s selection as a reviewer for top-tier journals and conferences serves as a testament to his expertise and standing within the academic community. This level of involvement often reflects recognition by peers and editors for his technical insight and critical thinking.

Skills and Certifications

  • Zhen’s core competencies include deep learning, fault diagnosis, robotics, rotating machinery analysis, anomaly detection, and imbalance learning. He is particularly skilled in emerging machine learning paradigms such as few-shot learning and transfer learning. His research integrates these advanced techniques to solve complex problems related to industrial automation and intelligent monitoring.

Research Focus

  • Zhen Guo’s research centers on the intersection of artificial intelligence and mechanical engineering, with an emphasis on fault diagnosis and intelligent monitoring systems. He is especially interested in leveraging deep learning for detecting anomalies in rotating machinery, optimizing performance through imbalance learning, and developing robust solutions using few-shot and transfer learning approaches. His work contributes to building smarter, more reliable engineering systems in transportation and logistics.

Conclusion

  • Zhen Guo is an emerging researcher with a strong academic background and a growing presence in the international engineering research community. His blend of expertise in machine learning and mechanical systems positions him as a promising scholar dedicated to advancing intelligent diagnostics and automation. His contributions as a reviewer and researcher underscore his commitment to innovation and academic excellence.

Publications

  • Few-shot sample multi-class incremental fault diagnosis for gearbox based on convolutional-attention fusion network
    Authors: Guo, Z.; Du, W.; Liu, Z.; Hu, T.; Yu, Y.; Li, C.
    Journal: Expert Systems with Applications

  • Squeeze-and-excitation attention residual learning of propulsion fault features for diagnosing autonomous underwater vehicles
    Authors: Du, W.; Yu, X.; Guo, Z.; Wang, H.; Pu, Z.; Li, C.
    Journal: Journal of Field Robotics

  • Unsupervised anomaly detection for gearboxes based on the deep convolutional support generative adversarial network
    Authors: Chengguang Zhang; Zhen Guo; Chuan Li
    Journal: Scientific Reports

  • Channel attention residual transfer learning with LLM fine-tuning for few-shot fault diagnosis in autonomous underwater vehicle propellers
    Authors: Wenliao Du; Xinlong Yu; Zhen Guo; Hongchao Wang; Yiyuan Gao; Ziqiang Pu; Guanghua Li; Chuan Li
    Journal: Ocean Engineering

  • Fault diagnosis of rotating machinery with high-dimensional imbalance samples based on wavelet random forest
    Authors: Zhen Guo; Wenliao Du; Chuan Li; Xibin Guo; Zhiping Liu
    Journal: Measurement

Xianyun Liu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Xianyun Liu | Engineering | Best Researcher Award

Xianyun Liu is an Associate Professor at the School of Microelectronics, Changzhou University, and a Master’s Supervisor specializing in semiconductor materials and devices. She holds a Ph.D. and serves as a director of the Jiangsu Provincial Physical Society and a review expert for the National Natural Science Foundation of China. She has received prestigious honors including the President’s Outstanding Award from the Chinese Academy of Sciences and fellowships from the Japan Society for the Promotion of Science. Her research has led to over 20 SCI/EI-indexed publications, one Nature Index paper, and the successful commercialization of a patented invention.

Assoc. Prof. Dr. Xianyun Liu | Changzhou University | China

Profile

SCOPUS ID

ORCID ID

🎓Education

  • Xianyun Liu earned her Ph.D. in a discipline closely related to semiconductor materials and devices. Her advanced academic training equipped her with a deep understanding of microelectronics and solid-state physics. Her educational path laid the foundation for a career that blends rigorous scientific research with applied technological innovation.

👨‍🏫 Experience

  • Currently serving as an Associate Professor at the School of Microelectronics, Changzhou University, Xianyun Liu also holds the role of Master’s Supervisor. She contributes actively to academic development and student mentorship in the field of semiconductor materials and devices. She has undertaken significant roles such as Director of the Jiangsu Provincial Physical Society and acts as a review expert for the National Natural Science Foundation of China’s correspondence evaluation projects. Her international experience is further marked by her research fellowship in Japan, enhancing her global research perspective.

🤝 Awards and Recognition

  • Xianyun Liu has received numerous prestigious recognitions throughout her career. She was awarded the First Prize of the President’s Scholarship and the “President’s Outstanding Award” by the Chinese Academy of Sciences, acknowledging her academic excellence. She was also a recipient of both the Japan Society for the Promotion of Science Fellowship and the JSPS Postdoctoral Research Fellowship. Her contributions to scientific research have earned her the Second Prize for Outstanding Scientific and Technological Papers in Natural Sciences in Changzhou and facilitated the successful commercialization of a patented invention.

💡Skills and Certifications

  • Xianyun Liu specializes in the development and characterization of semiconductor materials and devices. Her core competencies include advanced research in microelectronic systems, applied physics, and materials science. She is also experienced in guiding postgraduate research, peer review of scientific proposals, and managing funded scientific projects. Her technical strengths are complemented by her strategic thinking in project execution and technology transfer.

🔬 Research Focus

  • Her primary research focuses on semiconductor materials and devices. She explores novel material properties, electronic structure analysis, and device fabrication techniques that enhance performance and reliability in microelectronic applications. Her work supports the development of cutting-edge technologies in fields such as integrated circuits and optoelectronics.

🌎Conclusion

  • Xianyun Liu is a highly accomplished researcher and educator whose career reflects a strong commitment to scientific advancement in the field of semiconductors. Her blend of academic excellence, leadership in scientific societies, international collaboration, and practical innovation underlines her impact in both academic and industrial spheres. Her contributions continue to inspire progress in microelectronics and related disciplines.

📖Publications

  • Modeling and Simulation of High-Sensitivity Silicon-Graphene TFET for Label-Free Biosensors
    Authors: Liu, X.; Lu, C.; Yao, J.; Yang, D.; Yuan, W.
    Journal: ECS Journal of Solid State Science and Technology

  • Simulation and Optimization of Enhanced Back-Gated GaN-Based HEMT Ultraviolet Photodetector with a High Photo-to-Dark Current Ratio
    Authors: Yuan, W.; Liu, X.; Yang, D.; Yao, J.; Lu, C.
    Journal: AIP Advances

  • Design and Numerical Simulation of Capacitive Pressure Sensor Based on Silicon Carbide
    Authors: Zhou, Q.; Liu, X.; Luo, S.; Jiang, X.; Yang, D.; Yuan, W.
    Journal: IEEE Sensors Journal

  • Effect of Source–Drain Opposite Side Gate on the AlGaN/GaN High Electron Mobility Transistor Devices
    Authors: Luo, S.; Liu, X.; Jiang, X.
    Journal: Physica Status Solidi A: Applications and Materials Science

  • Study on the Point-Contact Gate AlGaN/GaN High Electron Mobility Transistor with 0.1 μm Gate Length
    Authors: Luo, S.; Liu, X.; Jiang, X.
    Journal: Physica Status Solidi A: Applications and Materials Science

Mei Huang | Engineering | Best Researcher Award

Dr. Mei Huang | Engineering | Best Researcher Award

Huang Mei is a Lecturer at the Department of Urban and Rural Planning, School of Architecture, Xi’an University of Architecture and Technology. She is currently pursuing her Doctorate in Urban and Rural Planning at the same institution. Her research focuses on green water infrastructure planning and rural planning, particularly in the context of traditional villages and sustainable development in Northwest China. Huang has led and participated in numerous national and provincial research projects and has contributed significantly to the development of low-carbon and livable rural environments. She has also worked as a project coordinator for rural development initiatives, demonstrating a strong integration of academic and practical expertise in planning and environmental design.

Dr. Mei Huang | Xi’an University of Architecture and Technology | China

Profile

🎓Education

  • Huang Mei holds a Bachelor’s degree in Urban Planning from Yunnan University, completed in 2011. She pursued her Master’s degree in Urban Planning and Design at Xi’an University of Architecture and Technology from 2011 to 2014, where she was recommended for exemption from the entrance examination. She is currently a Doctoral Candidate in Urban and Rural Planning at the same university, a program she began in 2018 and is expected to complete in 2025.

👨‍🏫 Experience

  • Since July 2014, Huang Mei has served as a Lecturer in the Department of Urban and Rural Planning, School of Architecture at Xi’an University of Architecture and Technology. Concurrently, from 2014 to 2017, she worked as a Project Coordinator for the Traditional Villages Program in Qiandongnan, managed by the Research Center for Rural Development and Construction under the Zhichunzhi Bridge Charity Foundation in Hong Kong. Her professional journey highlights a commitment to teaching, research, and hands-on project coordination in rural and traditional village planning.

🏆Awards and Recognitions

  • Huang Mei’s primary research interests lie in green water infrastructure planning and rural planning. Her work emphasizes sustainable and low-carbon development approaches, particularly in the context of traditional villages and small towns in Northwest China. She has a strong focus on practical applications of planning methods that integrate engineering, space, and environmental considerations to improve rural domestic sewage treatment, living environments, and cultural heritage protection.

💡Skills and Certifications

  • Huang Mei has been recognized for her expertise and leadership in several youth and general fund projects supported by the National Natural Science Foundation of China, the Ministry of Education, and various provincial housing and urban-rural development departments. Her inclusion in the Youth Talent Support Project of the Science and Technology Association of Shaanxi Universities further attests to her contributions to rural and green planning research.

🔬 Research Focus

  • Her skills encompass project coordination, rural planning and design, green infrastructure development, and interdisciplinary research methodology. Huang Mei is experienced in planning models suitable for traditional village environments and has expertise in developing technical standards and evaluation frameworks for livable and sustainable rural development.

🌎Conclusion

  • Dr. Huang Mei stands out as a visionary researcher in sustainable rural infrastructure and planning. Her body of work contributes not only to academic discourse but also to real-world problem-solving, particularly in historically underserved areas. She exemplifies the core spirit of the Best Researcher Award—intellectual excellence, applied innovation, and community impact. Her nomination would elevate the profile of both the award and the field of rural environmental planning.

📖Publications

  •  Resource-Oriented Treatment Technologies for Rural Domestic Sewage in China Amidst Population Shrinkage: A Case Study of Heyang County in Guanzhong Region, Shaanxi Province

    Authors: Mei Huang, Degang Duan, Sicheng Tan, Ling Huang
    Journal: Buildings

  • Rural Resilience Evaluation and Risk Governance in the Middle Reaches of the Heihe River, Northwest China: An Empirical Analysis from Ganzhou District, a Typical Irrigated Agricultural Area

    Authors: Jing Huang, Dongqian Xue, Mei Huang
    Journal: Land

Fei Xiao | Engineering | Innovative Research Award

Dr. Fei Xiao | Engineering | Innovative Research Award 

Xiao Fei is an expert in civil and airport engineering, specializing in cryogenic material storage, geothermal energy, and data analytics. He holds a PhD in Civil Engineering from Nanyang Technological University and has extensive research experience in underground LNG storage and grouting technologies. Currently based at Nanjing University of Aeronautics and Astronautics, he has also worked with institutions like Shanghai Jiao Tong University and Huazhong University of Science and Technology. His skills include finite element analysis, data modeling, and structural optimization. Xiao Fei has received multiple academic awards, including the SRMEG Outstanding Paper Award.

Dr. Fei Xiao | Nanjing University of Aeronautics and Astronautics | China

Profile

SCOPUS ID

🎓Education

  • Xiao Fei obtained a PhD in Civil Engineering from Nanyang Technological University (NTU), Singapore, between August 2014 and August 2018. Prior to that, he earned a Master of Engineering in Naval Architecture and Ocean Engineering from Shanghai Jiao Tong University (SJTU) from September 2011 to March 2014. His undergraduate studies were completed at Huazhong University of Science and Technology (HUST), where he graduated magna cum laude with a Bachelor of Science degree in Naval Architecture and Ocean Engineering from September 2007 to June 2011.

👨‍🏫Experience

  • Xiao Fei has gained professional experience through roles in both academia and industry. He worked as an Assistant Engineer at Germanischer Lloyd (GL, Shanghai) from November 2013 to January 2014, where he was responsible for 3D modeling of a 10,000 TEU container ship. Additionally, he served as a work assistant at SJTU’s Graduate School (2011-2013) and held leadership positions in student organizations. His industry experience includes an assistant surveyor role at Registro Italiano Navale (RINA, Shanghai) in early 2011, where he was involved in quality control testing and structural inspections.

🏆Awards and Recognitions

  • Xiao Fei has received multiple prestigious awards throughout his academic and professional career. He won the Best Presentation and Outstanding Paper Award at the SRMEG (Singapore) in 2021, as well as the Second Runner-up Outstanding Paper Award in 2018-2019. During his studies at SJTU, he was awarded the American Bureau of Shipping Scholarship (Top 10%) in 2013 and the China Classification Society Scholarship (Top 23%) in 2012. He has also been recognized for his leadership, receiving the Outstanding Student Leader Award at both SJTU (2012) and HUST (2010). His achievements include academic excellence scholarships, self-reliance scholarships, and recognition for moral and extracurricular contributions at HUST.

💡Skills and Certifications

  • Xiao Fei possesses a strong technical skill set, including proficiency in finite element analysis using COMSOL Multiphysics, ANSYS, and ABAQUS. He is adept at designing and conducting experiments, performing data post-processing, and developing application programs using MATLAB and C Language. His expertise extends to data analysis with MATLAB and IBM SPSS, as well as 2D and 3D modeling using AutoCAD and Poseidon.

🔬 Research Focus

  • Xiao Fei has been extensively involved in research projects related to underground LNG storage, high-pressure grouting technology for tunneling, and stability analysis of offshore structures. At the SJ-NTU Corporate Lab from May 2019 to May 2021, he worked on determining the configuration of pit-type storage systems, developing cost estimation and optimization models, and building numerical models for thermal and mechanical analysis. During his PhD at NTU (2015-2019), he focused on high-pressure grouting for tunneling, employing artificial neural networks for predictive modeling and developing simulations for grout penetration in fractured rock systems. His earlier research at SJTU (2012-2013) and HUST (2011) involved stability and reliability analysis of top-tensioned risers in real sea conditions and stress intensity factor analysis in offshore structures.

🌎Conclusion

  • Dr. Fei Xiao is highly suitable for the Research for Innovative Research Award, given his exceptional research contributions, innovative problem-solving, and leadership in advancing engineering knowledge. His work aligns with the award’s goal of recognizing researchers who push the boundaries of technology and sustainability.

📖Publications

  • Innovative measures for thermal performance enhancement of single well-based deep geothermal systems: existing solutions and some viable options
    Authors: F. Xiao*, Z. Zhao, L. Yang
    Journal: Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022

  • Numerical simulation of single well geothermal system based on the artificial geyser concept considering phase change and multiphysics coupling
    Authors: Z. Chen, F. Xiao*
    Journal: Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2025

  • Thermal runaway prevention and mitigation for lithium-ion battery-powered electric aircraft: challenges and perspectives
    Authors: L. Yang, F. Liu, F. Li, Z. Chen, J. Wang, L. Gao, F. Xiao, J. Sun, A. Romagnoli
    Journal: Aerospace Traffic and Safety, 2024

  • Revisiting the evaluation of hydraulic transmissivity of elliptical rock fractures in triaxial shear-flow experiments
    Authors: Y. Ji, H. Hofmann, E. H. Rutter, F. Xiao*, L. Yang
    Journal: Rock Mechanics and Rock Engineering, 2022

  • Performance enhancement of horizontal extension and thermal energy storage to an abandoned exploitation well and satellite LNG station integrated ORC system
    Authors: F. Xiao*, L. Yang, L. He, A. Gil, S. Rajoo, Z. Zhao, A. Romagnoli, L. F. Cabeza
    Journal: Applied Thermal Engineering, 2022

Mr. Yunfei Xia | Engineering | Best Researcher Award

Mr. Yunfei Xia | Engineering| Best Researcher Award

Yunfei Xia is a postgraduate student at China People’s Police University, specializing in Safety Engineering. With a foundation in Fire Engineering, he has participated in two research projects and authored three academic papers, including one SCI journal article. His research focuses on fire risk assessment, particularly in battery pack production processes, where he developed a novel safety risk assessment model using the DEMATEL-ANP method. Yunfei’s work addresses critical gaps in fire safety, offering dynamic solutions for industrial risk management and safety optimization

 

Mr. Yunfei Xia | China People’s Police University | China

Profile

ORCID ID

🎓 Education

  • Mr. Yunfei Xia holds a strong academic foundation in fire and safety engineering. He completed his undergraduate studies in Fire Engineering and pursued postgraduate studies specializing in Safety Engineering at China People’s Police University. His academic journey reflects his commitment to advancing safety in critical engineering domains.

💼 Experience

  • Yunfei Xia has participated in two significant research projects, demonstrating his growing expertise in fire risk assessment. With a focus on applied research, he has authored three academic papers, including one SCI journal article and two conference papers. His work reflects a dedication to addressing real-world safety challenges, particularly in the context of fire and battery production processes.

🛠️ Skills and Certifications

  • Yunfei Xia is skilled in fire risk assessment and the application of advanced analytical methods such as the DEMATEL-ANP model. He excels at evaluating complex relationships among risk factors and developing dynamic, data-driven solutions for improving safety in engineering and industrial settings.

🔬 Research Focus

  • Mr. Xia’s research focuses on fire risk assessment, with a specific emphasis on the safety challenges associated with battery pack production processes. His innovative work addresses gaps in traditional risk assessment methodologies, offering dynamic evaluation techniques and insights for improving safety management in high-risk industries.

🔥 Contributions

  • Yunfei Xia has developed a novel safety risk assessment model for battery pack production using the DEMATEL-ANP method. This model analyzes the intricate relationships and impacts of risk factors, providing a more comprehensive and dynamic approach to safety management. His contributions offer valuable insights for mitigating fire risks and improving industrial safety standards.

Conclusion

  • Yunfei Xia is an outstanding candidate for the Research for Best Researcher Award. His innovative contributions to safety engineering, demonstrated academic achievements, and impactful research addressing global safety challenges make him a strong contender. Awarding Yunfei this recognition would celebrate his work and inspire further advancements in safety engineering and industrial risk management.

📄Publications

  • Research on Fuzzy Comprehensive Evaluation of Fire Safety Risk of Battery Pack Production Process Based on DEMATEL-ANP Method
    Authors: Yunfei Xia, Qingming Guo, Lei Lei, Jiong Wu, Xin Su, Jianxin Wu
    Journal: Fire