Dr. Jie Li | Engineering |Editorial Board Member

Dr. Jie Li | Engineering |Editorial Board Member

Beijing University of Chemical Technology | China

Dr. Jie Li is an emerging and highly promising researcher in the field of power engineering, engineering thermophysics, and advanced composite materials, known for his strong technical foundations, innovative thinking, and growing academic influence. He is currently affiliated with Beijing University of Chemical Technology, where he conducts cutting-edge research on composite material lightweight structural design, multilayer heat conduction mechanisms, torsional lamination technology, and anisotropic thermal functional materials. Dr. Li focuses on establishing high-performance lightweight structural systems through multilayer thermal resistance modelling, providing scientific solutions for next-generation energy systems, aerospace materials, and high-efficiency heat-transfer structures. His research achievements include 25 published academic documents, which have collectively received 661 citations across 597 documents, reflected by an impressive h-index of 16, underscoring his expanding academic visibility and contribution to the materials and thermal sciences community. Dr. Li is the author of impactful research such as Lamination Magic for Heat Transfer: Anisotropic Functional Composites Based on Multilayer Thermal Conductivity Modeling, demonstrating his expertise in coupling theoretical modelling with experimental validation to enhance material performance. In addition to his research accomplishments, Dr. Li has received multiple academic honors, including doctoral scholarships, national graduate scholarships, and merit-based awards, recognizing his excellence, dedication, and leadership in graduate studies. He possesses strong capabilities in mechanical design, manufacturing technology, 3D modelling, finite-element analysis, and simulation software, being proficient in SolidWorks, AutoCAD, 3D-Deform, ANSYS, Origin, and integrated digital research tools. Dr. Li’s innovative approach to composite structural engineering, combined with his technical expertise and consistent research output, positions him as a rising scholar capable of making long-term contributions to high-performance materials engineering and thermophysical system design.

Profile: Orcid | Scopus

Featured Publications

Li, J. (2025). HLDP nano-assembly boosts monosultap insecticidal activity against Asian corn borers through enhanced neurotoxicity and energy depletion. Pesticide Biochemistry and Physiology.

Li, J. (2025). Naphthalimide-conjugated spiropyran: Dual-state emission and photo-responsive dynamic fluorescence color for information encryption application. Advanced Functional Materials.

Meng Li | Engineering | Best Researcher Award

Dr. Meng Li | Engineering | Best Researcher Award 

Li Meng is an Assistant Researcher at Northwestern Polytechnical University specializing in ultra-fast laser processing of advanced engineering materials. His research focuses on developing low-damage, high-precision processing technologies, particularly for turbine film cooling holes. He has contributed to national and university-level projects, secured multiple patents, and published in leading journals such as the Journal of Materials Processing Technology and Journal of Manufacturing Processes. Collaborating with top institutions, Li Meng continues to advance innovations in precision manufacturing, bridging academic research with industrial applications.

Dr. Meng Li | Northwestern Polytechnical University | China

Profiles

SCOPUS

ORCID

Education

  • Li Meng pursued higher studies with a strong focus on advanced manufacturing and materials processing. Throughout the academic journey, he developed expertise in laser processing technologies and the application of engineering principles to complex material challenges. His education provided him with a solid foundation in mechanical and aeronautical sciences, equipping him with both theoretical knowledge and hands-on skills to contribute effectively to high-level research in ultra-fast laser processing

Experience

  • Li Meng has dedicated his professional career to research in the field of ultra-fast laser processing of advanced engineering materials. He has actively contributed to major national projects and university-led innovations that focus on improving the quality and efficiency of laser-based manufacturing processes. His experience extends beyond academic work, as he has also contributed to consultancy and industry-based projects, bridging the gap between theoretical research and industrial application.

Awards and Recognition

  • Through consistent innovation and impactful research, Li Meng has earned recognition within the academic and professional community. His contributions to advancing low-damage laser processing techniques and collaborative works with esteemed institutions have strengthened his reputation as a promising researcher. The successful execution of funded projects and achievements in securing patents further reflect his ability to transform scientific ideas into practical outcomes that have long-term value.

Skills and Expertise

  • Li Meng has developed strong skills in ultra-fast laser processing, advanced materials engineering, and precision manufacturing. He demonstrates expertise in applying innovative approaches to reduce material damage while achieving high precision in processing. His collaborative spirit and ability to work across multidisciplinary teams further enhance his effectiveness in research. Additionally, his skills extend to project execution, problem-solving, and translating research into practical engineering solutions.

Research Focus 

  • Li Meng’s research primarily revolves around ultra-fast laser processing of advanced engineering materials. He has concentrated on optimizing processing methods to achieve superior quality and minimal material damage. His focus on turbine film cooling hole technology highlights his contribution to the aerospace and energy sectors, where precision and durability are essential. His work is paving the way for high-performance material applications that meet the demanding requirements of modern engineering industries.

Publications

Creep life prediction of Ni‐based single‐crystal superalloy plate with film‐cooling holes using a modified critical distance method based on the improved weight function
Authors: Ping Wang, Zhixun Wen, Meng Li, Guangxian Lu, Zhenwei Li, Pengfei He
Journal: Fatigue & Fracture of Engineering Materials & Structures

High temperature creep property of a novel porous double layer cooling structure for gas turbine blades
Authors: Ping Wang, Meng Li, Zhixun Wen, Chengjiang Zhang, Zhenwei Li, Pengfei He
Journal: Engineering Fracture Mechanics

Femtosecond laser high-quality drilling of film cooling holes in nickel-based single superalloy for turbine blades with a two-step helical drilling method
Authors: Meng Li, Zhi-xun Wen, Ping Wang, Yu-xing Liu, Zhen-wei Li, Zhu-feng Yue
Journal: Journal of Materials Processing Technology

Oxidation behavior of a nickel-based single crystal superalloy at 1100° C under different oxygen concentration
Author: Meng Li
Journal: Journal of Materials Science

Effect of aging heat treatment on microstructure of Ni-based single crystal superalloys
Authors: Zhengxing Feng, Zhixun Wen, Meng Li, Yanchao Zhao, Zhufeng Yue
Journal: AIP Advances

Conclusion

  • Li Meng stands out as a researcher who combines technical knowledge, innovative thinking, and practical application in the field of ultra-fast laser processing. His dedication to advancing precision manufacturing technologies and his strong collaborative network make him a valuable contributor to both academic and industrial research. With continued efforts, he is well-positioned to make further breakthroughs that will strengthen the future of advanced material processing and laser-based manufacturing technologies.

Mr. Yunfei Xia | Engineering | Best Researcher Award

Mr. Yunfei Xia | Engineering| Best Researcher Award

Yunfei Xia is a postgraduate student at China People’s Police University, specializing in Safety Engineering. With a foundation in Fire Engineering, he has participated in two research projects and authored three academic papers, including one SCI journal article. His research focuses on fire risk assessment, particularly in battery pack production processes, where he developed a novel safety risk assessment model using the DEMATEL-ANP method. Yunfei’s work addresses critical gaps in fire safety, offering dynamic solutions for industrial risk management and safety optimization

 

Mr. Yunfei Xia | China People’s Police University | China

Profile

ORCID ID

🎓 Education

  • Mr. Yunfei Xia holds a strong academic foundation in fire and safety engineering. He completed his undergraduate studies in Fire Engineering and pursued postgraduate studies specializing in Safety Engineering at China People’s Police University. His academic journey reflects his commitment to advancing safety in critical engineering domains.

💼 Experience

  • Yunfei Xia has participated in two significant research projects, demonstrating his growing expertise in fire risk assessment. With a focus on applied research, he has authored three academic papers, including one SCI journal article and two conference papers. His work reflects a dedication to addressing real-world safety challenges, particularly in the context of fire and battery production processes.

🛠️ Skills and Certifications

  • Yunfei Xia is skilled in fire risk assessment and the application of advanced analytical methods such as the DEMATEL-ANP model. He excels at evaluating complex relationships among risk factors and developing dynamic, data-driven solutions for improving safety in engineering and industrial settings.

🔬 Research Focus

  • Mr. Xia’s research focuses on fire risk assessment, with a specific emphasis on the safety challenges associated with battery pack production processes. His innovative work addresses gaps in traditional risk assessment methodologies, offering dynamic evaluation techniques and insights for improving safety management in high-risk industries.

🔥 Contributions

  • Yunfei Xia has developed a novel safety risk assessment model for battery pack production using the DEMATEL-ANP method. This model analyzes the intricate relationships and impacts of risk factors, providing a more comprehensive and dynamic approach to safety management. His contributions offer valuable insights for mitigating fire risks and improving industrial safety standards.

Conclusion

  • Yunfei Xia is an outstanding candidate for the Research for Best Researcher Award. His innovative contributions to safety engineering, demonstrated academic achievements, and impactful research addressing global safety challenges make him a strong contender. Awarding Yunfei this recognition would celebrate his work and inspire further advancements in safety engineering and industrial risk management.

📄Publications

  • Research on Fuzzy Comprehensive Evaluation of Fire Safety Risk of Battery Pack Production Process Based on DEMATEL-ANP Method
    Authors: Yunfei Xia, Qingming Guo, Lei Lei, Jiong Wu, Xin Su, Jianxin Wu
    Journal: Fire

Jianghua Sui | Engineering | Best Researcher Award

Mrs. Jianghua Sui | Engineering Best Researcher Award

Innovative Impact:

  • Sui’s application of cutting-edge technologies, including new materials and energy sources, to fishing vessels has yielded substantial economic and operational benefits. Her efforts have supported strategic upgrades to offshore fishing as a national industry and informed policy development for agencies like the Maritime Safety Administration.

Mrs. Jianghua Sui | Dalian Ocean University | China

Author Profile

SCOPUS ID

 🎓EARLY ACADEMIC PURSUITS:

  • Mrs. Jianghua Sui began her academic journey at Dalian Maritime University, where he earned her Ph.D. in Marine Engineering in 2007. Her passion for maritime research and engineering laid the foundation for a distinguished career focused on innovation and safety in the marine sector.

 🏥 Professional Milestones:

  • Since 2016, Mrs. Sui has served as a professor at Dalian Ocean University and currently holds the esteemed position of Dean of Navigation and Ship Engineering College. Over her career, he has undertaken 93 scientific research projects, with 85 completed and 8 ongoing. Her prolific research output includes 50 published papers as the first or corresponding author. Additionally, he has authored 12 books and holds 13 patents, solidifying her reputation as a leading academic and innovator.

🧬 Research Contributions:

  • Mrs. Sui’s research encompasses ship motion control, fishing vessel safety, marine automation engineering, and intelligent algorithms. Her work on the safety technology of fishing vessels has been instrumental in driving advancements in maritime safety. Notable achievements include the integration of new technologies, energy sources, and materials on fishing vessels, leading to significant economic benefits. Her research has directly supported policy-making for organizations such as the Maritime Safety Administration and the Fisheries and Fishery Administration.

🌍 IMPACT AND INFLUENCE

  • Mrs. Jianghua Sui has made significant contributions to the field of marine engineering and fishing vessel safety, earning widespread recognition for her impactful work. Her pioneering research on safety technologies and innovative applications of new materials and energy sources in fishing vessels has directly contributed to economic growth and enhanced maritime safety standards. These advancements have been highly commended by the Ministry of Agriculture and have supported the elevation of offshore fishing as a strategic industry in China. Mrs. Sui’s efforts have also influenced policy decisions by the Maritime Safety Administration and the Fisheries and Fishery Administration, underscoring her role as a key advisor in the maritime sector.

🖋 EDITORIAL APPOINTMENTS

  • Mrs. Sui plays an integral role in the academic community by serving on the editorial boards of several prestigious journals. These include the Journal of Dalian Ocean University, the Journal of Fishery Modernization, and the Chinese Journal of Navigation. Through these appointments, he actively shapes the discourse and direction of research in marine engineering and safety, ensuring the dissemination of high-quality scholarly work.

🤝 COLLABORATIONS AND PROFESSIONAL MEMBERSHIPS

  • Mrs. Sui has established a vast network of collaborations and professional affiliations. As a visiting scholar at the State Key Laboratory of Process Industry at Northeastern University, he further expanded her expertise. He holds leadership roles such as Deputy Director of the Fishing Vessel Safety Research Center, Head of the Secretariat of the Fishing Vessel Technology Research Subcommittee, and Executive Director of the China Ocean Fisheries Association. Her membership in national and provincial expert committees reflects her standing as a trusted advisor and leader in advancing marine and fishing vessel safety standards.

📊 ACADEMIC CITATIONS

  • A prolific scholar, Mrs. Sui has published 20 journal articles in SCI and Scopus-indexed journals, with her research cited in leading platforms. Her contributions include 5 SCI-indexed papers and 15 EI-indexed works, reflecting her influence and academic excellence. Additionally, he has authored 12 books and contributed 50 papers as the first or corresponding author, further cementing her reputation as an authority in maritime engineering and safety.

🌟 LEGACY AND FUTURE CONTRIBUTIONS

  • Mrs. Sui’s enduring legacy lies in her commitment to fishery vessel safety and technological innovation. Her work has provided invaluable support for formulating national policies, significantly improving maritime safety standards. Looking forward, her efforts will continue to shape the future of marine engineering, inspiring advancements in sustainable practices, intelligent systems, and fishing vessel modernization.

📄Publications

  • Auxiliary model nonlinear innovation least squares algorithm for identification ship 4-DOF via full-scale test data
    • Authors: Song, C.; Li, Y.; Sui, J.
    • Journal: Scientific Reports, 2024, 14(1), 25861
  • Pitching Stabilization Control for Super Large Ships Based on Double Nonlinear Positive Feedback under Rough Sea Conditions
    • Authors: Song, C.; Qiao, Q.; Sui, J.
    • Journal: Journal of Marine Science and Engineering, 2024, 12(9), 1657
  • Nonlinear innovation identification algorithm based on comprehensive application method for large ship model in rough sea
    • Authors: Song, C.; Li, Y.; Sui, J.; Zhang, X.
    • Journal: Ocean Engineering, 2024, 303, 117502
  • Dynamic Positioning Control of Large Ships in Rough Sea Based on an Improved Closed-Loop Gain Shaping Algorithm
    • Authors: Song, C.; Guo, T.; Sui, J.; Zhang, X.
    • Journal: Journal of Marine Science and Engineering, 2024, 12(2), 351
  • Nonlinear Innovation Identification for Norrbin Mathematical Model Via Actual Ship
    • Authors: Sui, J.; Bai, C.; Song, C.; Zhang, X.
    • Journal: Proceedings of the 36th Chinese Control and Decision Conference (CCDC), 2024, pp. 572–577

Mr. Wajid Khan | Information Engineering | Best Researcher Award | 1128

Mr. Wajid Khan | Information Engineering |  Best Researcher Award

Mr. Wajid Khan, Tianjin University , China

Professional Profile

Scopus

OrcID

EARLY ACADEMIC PURSUITS 📘

Wajid Khan holds a bachelor’s degree in electrical engineering. His undergraduate years were marked by a profound passion for the field and a commitment to academic excellence. Engaging in various research activities, Wajid demonstrated his dedication and produced a notable publication that highlights his early contributions to electrical engineering.

PROFESSIONAL ENDEAVORS 💼

Currently, Wajid is pursuing his MS in Electrical Information and Communication Engineering at Tianjin University. Under the expert supervision of Professor Feng Renhai, he is delving deeper into his field, focusing on critical areas such as renewable energy and power system stability. This advanced education and hands-on research are shaping him into a knowledgeable and skilled professional.

 CONTRIBUTIONS AND RESEARCH FOCUS 📚

  • Wajid’s research is centered on cutting-edge topics, particularly renewable energy and power system stability. These areas are vital for sustainable development, and his work is contributing to addressing some of the most pressing challenges in the field. His dedication is evident through his involvement in high-impact research projects, highlighting his commitment to advancing knowledge and technology in electrical engineering.

IMPACT AND INFLUENCE 🌍

Working closely with Professor Feng Renhai has provided Wajid with invaluable experience and insight. This collaboration has allowed him to deepen his understanding of critical issues in electrical engineering and contribute meaningfully to the academic and professional community. His research not only advances theoretical knowledge but also has practical implications for solving real-world problems.

 ACADEMIC CITES 📑

Wajid’s academic journey is marked by significant achievements, including a notable publication during his undergraduate studies. This accomplishment underscores his dedication to research and his ability to contribute valuable insights to the field. His ongoing work continues to build on this foundation, promising further contributions and advancements.

PLEGACY AND FUTURE CONTRIBUTIONS 🌟

As Wajid continues his graduate studies, he is eager to expand his knowledge and make meaningful contributions to the field of electrical engineering. His goal is to drive innovation and have a positive impact on sustainable energy solutions. Wajid’s commitment to pushing the boundaries of knowledge ensures that his legacy will include significant advancements in electrical engineering and contributions to a more sustainable future.

 

NOTABLE PUBLICATIONS

Transient Stability Analysis of Electrical Power Systems using Polynomial Approximation based Galerkin Method

Authors: Li, Z., Khan, W., Wang, J., Wan, C., Feng, R.
Conference: 2023 5th International Conference on Power and Energy Technology, ICPET 2023
Pages: 1235–1240
Year: 2023

A Systematic Novel Implementation on Photovoltaic Power, Wind Energy and Solar Energy Models

Authors: Lei, Y., Khan, W., Wu, Y., Liu, Y., Feng, R.
Journal: Proceedings of SPIE – The International Society for Optical Engineering
Volume: 12594
Issue: N/A
Pages: 125940W
Year: 2023