Dr. Liu Ying | Engineering | Research Excellence Award

Dr. Liu Ying | Engineering | Research Excellence Award

East China Jiaotong University | China

Dr. Liu Ying is a dedicated researcher and lecturer in the field of mechanical and vehicle engineering, recognized for her growing scholarly contributions and interdisciplinary expertise that bridges intelligent control, computer vision, image detection, and reinforcement learning. With an academic foundation shaped through rigorous training in mechanical design, manufacturing, automation, and advanced mechanical engineering, she has developed a strong research trajectory supported by both theoretical depth and applied innovation. Her scholarly record reflects an emerging yet impactful academic presence, demonstrated through 6 published documents, 15 citations, and an h-index of 2, highlighting the relevance and early influence of her work within the scientific community. Dr. Liu’s research explores visual perception, target localization, and intelligent analysis, forming an integrated framework that advances algorithmic design and real-world technical applications. She has contributed to multiple scientific research projects, including national-level initiatives and collaborative programs with substantial funding volumes, underscoring her active role in large-scale, multidisciplinary research environments. Her output also includes seven journal publications indexed in major scholarly databases and more than twenty patents that showcase her drive for innovation and technological development. Beyond academic publishing, she has completed numerous consulting and industry-related projects, translating her research insights into practical solutions for engineering challenges. As a young academic, she has already taken lead roles in talent programs and continues to expand her impact by addressing key problems in vehicle engineering and intelligent systems. With a professional approach grounded in scientific rigor and a commitment to future-oriented advancements, Dr. Liu Ying exemplifies the qualities of an emerging research leader whose contributions continue to shape the evolving landscape of intelligent engineering and applied computational methodologies.

Citation Metrics (Scopus)

25
20
15
10
0

Citations
15

Documents
6

h-index
2

Citations

Documents

h-index


View Scopus Profile

Featured Publication

Dr. Jie Li | Engineering |Editorial Board Member

Dr. Jie Li | Engineering |Editorial Board Member

Beijing University of Chemical Technology | China

Dr. Jie Li is an emerging and highly promising researcher in the field of power engineering, engineering thermophysics, and advanced composite materials, known for his strong technical foundations, innovative thinking, and growing academic influence. He is currently affiliated with Beijing University of Chemical Technology, where he conducts cutting-edge research on composite material lightweight structural design, multilayer heat conduction mechanisms, torsional lamination technology, and anisotropic thermal functional materials. Dr. Li focuses on establishing high-performance lightweight structural systems through multilayer thermal resistance modelling, providing scientific solutions for next-generation energy systems, aerospace materials, and high-efficiency heat-transfer structures. His research achievements include 25 published academic documents, which have collectively received 661 citations across 597 documents, reflected by an impressive h-index of 16, underscoring his expanding academic visibility and contribution to the materials and thermal sciences community. Dr. Li is the author of impactful research such as Lamination Magic for Heat Transfer: Anisotropic Functional Composites Based on Multilayer Thermal Conductivity Modeling, demonstrating his expertise in coupling theoretical modelling with experimental validation to enhance material performance. In addition to his research accomplishments, Dr. Li has received multiple academic honors, including doctoral scholarships, national graduate scholarships, and merit-based awards, recognizing his excellence, dedication, and leadership in graduate studies. He possesses strong capabilities in mechanical design, manufacturing technology, 3D modelling, finite-element analysis, and simulation software, being proficient in SolidWorks, AutoCAD, 3D-Deform, ANSYS, Origin, and integrated digital research tools. Dr. Li’s innovative approach to composite structural engineering, combined with his technical expertise and consistent research output, positions him as a rising scholar capable of making long-term contributions to high-performance materials engineering and thermophysical system design.

Profile: Orcid | Scopus

Featured Publications

Li, J. (2025). HLDP nano-assembly boosts monosultap insecticidal activity against Asian corn borers through enhanced neurotoxicity and energy depletion. Pesticide Biochemistry and Physiology.

Li, J. (2025). Naphthalimide-conjugated spiropyran: Dual-state emission and photo-responsive dynamic fluorescence color for information encryption application. Advanced Functional Materials.

Assist. Prof. Dr. Shiyu Wei | Engineering | Editorial Board Member

Assist. Prof. Dr. Shiyu Wei | Engineering | Editorial Board Member

Xinjiang University | China

Assist. Prof. Dr. Wei Shiyu is an accomplished and forward-thinking researcher in advanced manufacturing, ultrasonic vibration–assisted machining, and laser processing, recognized for his scientific rigor, engineering innovation, and growing international influence. He serves as an Assistant Professor at the College of Mechanical Engineering, Xinjiang University, where he contributes to high-level teaching, research, and postgraduate supervision. Dr. Wei earned his Doctor of Engineering degree from Northeastern University, building strong foundations in smart manufacturing, machining science, and precision engineering. His research focuses on 3D ultrasonic vibration-assisted turning, microstructure evolution in machining, surface integrity optimization, material migration mechanisms, and hybrid energy-field manufacturing, bridging theoretical modeling with experimental validation. Dr. Wei has produced impactful scholarship reflected in 10 published documents, 88 citations across 58 documents, and a steadily rising h-index of 6, underscoring the influence and relevance of his work within the advanced manufacturing research community. He serves as principal investigator and key participant on multiple competitive scientific projects, including studies on ultrasonic vibration–assisted in situ ceramic coating formation, CO₂ pipeline flow assurance systems, hydrogen extraction technologies, and composite flexible cutting under electric–thermal–mechanical coupling fields. His work demonstrates strong interdisciplinary integration across mechanical engineering, materials science, green manufacturing, and energy processing. Dr. Wei has published in international journals such as Precision Engineering, Measurement, Ultrasonics, Machining Science and Technology, and The International Journal of Advanced Manufacturing Technology, where his studies on ultrasonic vibration–assisted machining are widely recognized for advancing efficient, high-precision, and low-damage processing of difficult materials. In addition to journal contributions, he holds officially granted patents, further highlighting his applied engineering impact. Through academic leadership, innovative research, and persistent pursuit of excellence, Assist. Prof. Dr. Wei Shiyu stands out as a rapidly emerging scholar in mechanical engineering and a compelling candidate for prestigious recognitions and research awards.

Profile: Scopus

Featured Publications

Wei, S., Zou, P., Fang, L., & Duan, J. (2023). Theoretical and experimental study of 3D ultrasonic vibration-assisted turning driven by two actuators. Measurement, 0263–2241, 112865.

Wei, S., Zou, P., Fang, L., & Duan, J. (2023). Microstructure evolution of medium carbon steel during heat-assisted 3D ultrasonic vibration-assisted turning. Ultrasonics, 107129.

Wei, S., Zou, P., Zhang, J., & Duan, J. (2022). Theoretical and experimental research on 3D ultrasonic vibration-assisted turning driven by a single actuator. The International Journal of Advanced Manufacturing Technology, 121, 1173–1190.

Wei, S., Zou, P., Duan, J., & Usman, M. M. (2022). Study on surface roughness model of 3D ultrasonic vibration-assisted turning driven by a single actuator. The International Journal of Advanced Manufacturing Technology, 123, 4413–4426.