Guoqiang Li | Engineering | Innovative Research Award

Dr. Guoqiang Li | Engineering | Innovative Research Award 

Dr. Guoqiang Li is a Lecturer and Master’s Supervisor at the School of Marine Engineering. He received his Ph.D. in Mechanical Engineering from Huazhong University of Science and Technology, following a Bachelor’s degree from Dalian Maritime University. His research focuses on the reliability analysis, anomaly detection, and intelligent fault diagnosis of offshore electromechanical equipment. He has led several national and provincial research projects and has expertise in industrial big data, AI algorithms, and smart operation platforms. Dr. Li is also a recipient of multiple science and teaching awards and has authored officially published textbooks.

Dr. Guoqiang Li | Jimei University | China

Profile

SCOPUS ID

Education

  • Dr. Guoqiang Li holds a Bachelor’s degree from Dalian Maritime University and earned both his Master’s and Doctoral degrees in Mechanical Engineering from Huazhong University of Science and Technology. His advanced training laid a strong foundation in engineering principles, particularly in the context of mechanical reliability and intelligent systems applied to offshore environments.

Experience

  • Dr. Li is currently serving as a Lecturer and Master’s Supervisor at the School of Marine Engineering. Since joining academia, he has been involved in teaching, mentoring graduate students, and spearheading innovative research. His contributions extend beyond his university role, having participated in national and provincial-level research initiatives and collaborated with major institutions such as Wuhan University of Technology. He has played both principal and collaborative roles in a variety of R&D projects focusing on marine power systems and intelligent control technologies.

Awards and Recognition

  • Dr. Li has received multiple accolades throughout his academic and research journey. These include prestigious Science and Technology Awards, recognition for Teaching Achievements, and the authorship of officially published textbooks. These honors underscore his excellence in both academic instruction and scientific innovation.

Skills and Certifications

  • His core competencies lie in reliability analysis, intelligent fault diagnosis, and predictive maintenance of offshore electromechanical systems. He is proficient in applying industrial big data analytics, artificial intelligence algorithms, and edge-cloud collaborative computing. Dr. Li is also skilled in the development of intelligent operation platforms and industrial internet systems that support real-time monitoring, diagnostics, and equipment self-regulation.

Research Focus

  • Dr. Li’s research centers on the intelligent monitoring and fault management of offshore equipment. He is especially interested in anomaly detection, condition assessment, and data-driven fault prediction. His work integrates cutting-edge technologies such as generative AI, deep reinforcement learning, and multi-source data fusion to enhance the autonomy and intelligence of marine mechanical systems. His goal is to develop systems capable of zero-sample learning, predictive maintenance, and self-healing control in complex maritime environments.

Conclusion

  • Dr. Guoqiang Li is a forward-thinking researcher and educator whose work lies at the intersection of artificial intelligence and marine engineering. With a firm academic grounding and an expanding portfolio of impactful projects, he continues to contribute to the advancement of intelligent fault diagnostics and system automation in offshore industries. His research and innovations are well-positioned to address the growing demand for smart, reliable, and efficient marine technologies.

Publications

  • Zero-sample fault diagnosis of rolling bearings via fault spectrum knowledge and autonomous contrastive learning
    Authors: Guoqiang Li, Meirong Wei, Defeng Wu, Yiwei Cheng, Jun Wu
    Journal: Expert Systems with Applications

  • Wavelet knowledge-driven transformer for intelligent machinery fault detection with zero-fault samples
    Authors: Guoqiang Li, Meirong Wei, Haidong Shao, Pengfei Liang, Chaoqun Duan
    Journal: IEEE Sensors Journal

  • Zero-fault sample wavelet knowledge-driven industrial robot fault detection
    Authors: Guoqiang Li, Meirong Wei, Defeng Wu, et al.
    Journal: Journal of Instrumentation

  • Deep reinforcement learning-based online domain adaptation method for fault diagnosis of rotating machinery
    Authors: Guoqiang Li, Jun Wu, Chao Deng, Xuebing Xu, Xinyu Shao
    Journal: IEEE/ASME Transactions on Mechatronics

  • Convolutional neural network-based Bayesian Gaussian mixture for intelligent fault diagnosis of rotating machinery
    Authors: Guoqiang Li, Jun Wu, Chao Deng, Zuoyi Chen, Xinyu Shao
    Journal: IEEE Transactions on Instrumentation and Measurement

Qixin Cheng | Engineering | Best Researcher Award

Mr. Qixin Cheng | Engineering | Best Researcher Award

Professional Memberships:

  • His membership in the Chinese Society of Mechanics signifies his active participation in the engineering research community, fostering collaboration and knowledge exchange within his field.
Mr. Qixin Cheng, Liaoning Technical University, China

Profile

OrcID

🌱EARLY ACADEMIC PURSUITS

  • Mr. Qixin Cheng embarked on his academic journey in Safety Engineering, laying the foundation for a career dedicated to enhancing safety protocols in the mining industry. Through his studies, he developed a robust understanding of mine gas permeability and its critical role in disaster prevention and safety management. His academic efforts have been focused on advancing innovative techniques to mitigate risks in mining environments.

💼 PROFESSIONAL ENDEAVORS

  • As a key member of the Mine Coupled Disaster Prevention and Control Theory and Technology Innovation Team at Liaoning Technical University, Mr. Cheng actively collaborates with experts in the field to pioneer solutions for mining-related safety hazards. He is also part of the prestigious Chinese Society of Mechanics and contributes to the Key Laboratory of Mine Thermodynamic Disasters and Control under the Ministry of Education. His work aims to enhance safety practices and develop groundbreaking approaches in the field of mining safety.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS 

  • Mr. Cheng has conducted several significant research projects that highlight his expertise in mine gas permeability and carbon sequestration. His notable projects include:
    1. Study on Pore Damage and Infiltration Enhancement Mechanism of Liquid CO₂ Cyclic Freeze-Thaw Loaded Coal Bodies
    2. Multi-field Coupling Mechanism of Gas and Carbon Sequestration in Coal Seam Replaced by Coal-fired Power Plant Flue Gas

    His research delves into the mechanisms that underlie gas and coal seam interactions, offering insight into safer and more sustainable mining practices. His published work, “Mathematical Model of Permeability Evolution of Liquid CO₂ Pressurized Coal,” further demonstrates his commitment to advancing scientific knowledge in this area.

 📚 ACADEMIC CITES 

  • Though Mr. Cheng has not published books, his work in academic journals continues to contribute to the literature on mining safety and engineering. His role in consultancy projects like:

    • Study on the Mechanism of Coupled Disaster Causing Mechanisms of Fire and Gas in Rapidly Inclined and Spontaneously Combustible Coal Seams in Xinjiang
    • Technical Consultation on the Emergency Decision-Making Information System for Mining Accidents

    has enabled him to influence safety protocols in both academic and practical domains, supporting disaster prevention and emergency response strategies.

🌍 IMPACT AND INFLUENCE

  • Mr. Cheng’s contributions to the Science Citation Index (SCI) underscore the impact of his research on the scientific community. His work is referenced by other researchers, reflecting the broader applicability of his findings and their influence on contemporary safety engineering practices. His research offers potential solutions for mitigating hazardous conditions in coal mining, particularly in the context of gas emissions and spontaneous combustion risks.

🌟 LEGACY AND FUTURE AND CONTRIBUTIONS

  • Looking ahead, Mr. Cheng aims to expand his research in coupled disaster mechanisms and multi-field safety interventions. His focus on applying innovative technologies to control thermodynamic disasters in mines positions him as a forward-thinking expert in the field. With ongoing projects and collaborations, he is dedicated to establishing safer mining environments, reducing environmental impacts, and setting new standards for disaster prevention.

📄Publications

  • Mathematical model of permeability evolution of liquid CO₂ pressurized coal
    Author: Qixin Cheng