Prof. Zhiying Ren | Material Engineering | Best Researcher Award
Industry Collaboration :
- Prof. Ren has collaborated with key enterprises, including the China Nuclear Power Research and Design Institute, to develop cutting-edge vibration and noise reduction solutions. These industry partnerships underscore his ability to bridge academic research with industrial applications.
Prof. Zhiying Ren, FuZhou University, China
Profile
🎓Early Academic Pursuits
Zhiying Ren’s early academic journey was marked by a deep commitment to mechanical engineering and material science. Her education and training laid a strong foundation for her later contributions in vibration reduction and metal rubber technology. Selected as a high-level talent in Fujian Province (Class B), her early career was characterized by a rapid ascent into specialized research areas, positioning her as an expert in mechanical and aerospace applications.
👩🔬Professional Endeavors
- Zhiying Ren has held prestigious positions, including being a core member of the Joint Fund Innovation Team of the Ministry of Education and serving as a “Tongjiang Scholar” in Quanzhou, Fujian Province. She is also recognized as a special commissioner of Science and Technology in Fujian Province, reflecting her influence and leadership in both academic and industrial sectors.
- Ren has managed over 30 major projects over the past five years, including three National Natural Science Foundation projects, one of which is a key national defense initiative. Her collaborations span national and provincial institutions, emphasizing her role in nuclear power, aerospace, and vibration noise reduction technologies.
🔬 CONTRIBUTIONS AND RESEARCH FOCUS
- Ren’s research focuses on advanced vibration and noise reduction technologies for aerospace, marine, and nuclear thermal power equipment. A significant area of her expertise is the development of special vibration damping materials, especially those involving metal rubber technology. This work has practical implications in both military and civil engineering sectors, particularly in noise reduction and oil-water separation technology, where metal rubber serves as a breakthrough material.
- Her dedication to research aligns with national strategic needs, with breakthroughs in vibration absorption and filtration technology. These advancements have translated into tangible solutions across several engineering fields, including defense and civilian applications.
🌍Impact and Influence
- Zhiying Ren’s impact on her field is profound, with 158 publications in SCI-indexed journals, 92 patents, and numerous collaborations with leading institutions. Her editorial roles in journals such as Symmetry, Vibration, Testing and Diagnosis, and Tribology Journal further cement her influence in the academic community.
- Through school-enterprise and university-enterprise collaborations, Ren has facilitated the development of crucial technologies, including the design of metal rubber hangers for the China Nuclear Power Research and Design Institute and vibration damping materials for elevator traction machines in partnership with the Fujian Special Equipment Inspection and Research Institute.
🏅ACADEMIC CITES AND RECOGNITION
Ren’s work is widely cited in the academic community, contributing to the development of vibration reduction techniques and materials for industrial applications. Her citation index includes influential works, such as the one referenced with DOI: 10.1002/adfm.202212262, which highlights her contributions to the field of metal rubber technology and its applications in vibration and noise reduction.
🌍 LEGACY AND FUTURE CONTRIBUTIONS
- Ren’s legacy in the field of mechanical engineering is marked by her focus on innovation and practical applications of metal rubber technology. As the director of the Tribology Branch of the Chinese Mechanical Engineering Society and deputy director of several national committees, she has played a key role in shaping research directions in her field. She is also an advocate for promoting women in science, serving as an executive director of the Fujian Female Science and Technology Workers Association.
- Looking forward, Ren’s ongoing research and collaborations are expected to continue yielding groundbreaking innovations, particularly in vibration reduction technologies and their applications in national defense, nuclear power, and civil engineering.
📰PUBLICATIONS
- Copper-Free Resin-Based Braking Materials: A New Approach for Substituting Copper with Fly-Ash Cenospheres in Composites
Authors: Zheng, K., Lin, Y., You, S., Ren, Z., Huang, J.
Journal: Chinese Journal of Mechanical Engineering (English Edition), 2024, 37(1), 28 - Design and Mechanical Properties of Metal Rubber Secondary Multidirectional Vibration Isolation System under Random Vibration
Authors: Shi, X., Zhou, H., Zhou, C., Guo, Z., Ren, Z.
Journal: Nonlinear Dynamics, 2024, 112(17), pp. 14805–14828 - Multi-Scale Pore Model Construction and Damage Behavior Analysis of SiCf/SiC Composite Tubes
Authors: Yan, W., Ren, Z., Fan, X., Shen, L., Xu, J.
Journal: Materials Characterization, 2024, 214, 114083 - Entangled Metallic Porous Material–Silicone Rubber Interpenetrating Phase Composites with Simultaneous High Specific Stiffness and Energy Consumption
Authors: Zheng, X., Xiao, Z., Ren, Z., Yao, L., Bai, H.
Journal: Composite Structures, 2024, 341, 118213 - Ultrasonic Rolling Strengthening of TC11 Titanium Alloy Surface: Corrosion and Wear Properties under Extreme Conditions
Authors: Zheng, K., Zhao, X., Pan, L., Ren, Z.
Journal: Wear, 2024, 550-551, 205415