Yunfei Zhang | Organic Chemistry | Best Researcher Award

Assoc Prof Dr.Yunfei Zhang | Organic Chemistry | Best Researcher Award

Training and Continuous Learning:
  • His postdoctoral training with renowned researchers such as Prof. Tristan Lambert, and ongoing collaborations with institutions and industry, indicate his continuous pursuit of cutting-edge research and innovation in his field.
Assoc Prof Dr. Yunfei Zhang, China Agricultural University, China

Profile

Scopus

OrcID

🏛️Early Academic Pursuits

  • Yunfei Zhang began his academic journey at China Agricultural University, earning a B.S. degree in 2013. His passion for organic chemistry led him to pursue a Ph.D. in 2018 under the guidance of Prof. Zhangjie Shi at Peking University. His doctoral studies focused on advanced organic synthesis and catalysis. Following this, he conducted postdoctoral research from 2018 to 2020 with Prof. Tristan Lambert at Cornell University, where he honed his expertise in electrochemical synthesis and transition metal catalysis. His early academic experience laid the foundation for his future research innovations.

👨‍🔬 PROFESSIONAL ENDEAVORS

  • In 2020, Yunfei Zhang joined China Agricultural University as an Associate Professor. Since then, he has led numerous high-impact research projects. His work has been recognized through collaborations with industry leaders such as ExxonMobil, where he explored active nitrogen-containing molecules (Project No. 202304811010385). His academic responsibilities extend beyond research, as he also serves as the English Editor of the Chinese Journal of Pesticide Science, showcasing his editorial skills and commitment to advancing knowledge in his field.

🏆 CONTRIBUTIONS AND RESEARCH FOCUS

  • Yunfei Zhang’s contributions to electrochemical organic synthesis and transition metal catalysis are significant. His notable publications, such as Org. Lett. 2023, 25, 7816-7821 and Org. Lett. 2022, 24, 5762-5766, have received widespread attention. His work in developing electrocatalytic methods, such as cyanidation of carboxylic acids (Patent No. 2022106184802) and synthesis of polysubstituted oxazoles (Patent No. 2022105876971), demonstrates his innovative approach to addressing complex chemical challenges. His research on novel pesticides has also contributed to the advancement of agricultural chemistry, offering sustainable solutions for pest control.

📊 IMPACT AND INFLUENCE

  • Yunfei Zhang’s work has had a significant impact on both academia and industry. His research papers, published in high-ranking journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, and ChemistryViews, have garnered high citations and recognition. Notably, his publication Org. Chem. Front. 2024, DOI: 10.1039/D4QO01381F has been nominated for the “Best Researcher Award” by the CSA Awards Committee, underscoring his influence in the field. Furthermore, his award of the 2025 OBC New Talent and the 2024 Thieme Certificate of Excellent Presentation highlights his standing as an emerging leader in organic chemistry.

🏅ACADEMIC CITES

  • Yunfei Zhang’s research has been widely cited in both academic and industrial contexts. His citation index reflects the importance and relevance of his work, especially in the areas of electrochemical synthesis and transition metal catalysis. His ongoing contributions continue to be a reference point for researchers in the fields of organic chemistry and pesticide development.

🚀LEGACY AND FUTURE CONTRIBUTIONS

  • As an associate professor at China Agricultural University, Yunfei Zhang’s legacy is already evident in his innovative research and industry collaborations. His patents and publications will undoubtedly influence future developments in electrochemical organic synthesis and pesticide chemistry. Looking ahead, his continued focus on sustainable and efficient chemical processes promises to further advance these fields, ensuring his lasting impact on both academic and practical applications.

📄Publications

  • Bio-stimulant based nanodelivery system for pesticides with high adhesion and growth stimulation
    Authors: He, C., Wu, T., Li, J., Zhang, Y., Du, F.
    Journal: Chemical Engineering Journal, 2024, 491, 151904
  • Electrochemical Lactonization Enabled by Unusual Shono-Type Oxidation from Functionalized Benzoic Acids
    Authors: Liu, C., Liu, Y., Yang, S., Zheng, B., Zhang, Y.
    Journal: Organic Letters, 2024, 26(9), pp. 1936–1940
  • Phytosterol organic acid esters: Characterization, anti-inflammatory properties and a delivery strategy to improve mitochondrial function
    Authors: Zou, X., Xu, T., Zhao, T., Zhang, Y., Yang, X.
    Journal: Current Research in Food Science, 2024, 8, 100702
  • Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes
    Authors: Yu, J., Liu, T., Sun, W., Zhang, Y.
    Journal: Organic Letters, 2023, 25(43), pp. 7816–7821
  • Recent advances in electrochemical C-H bond amination
    Authors: Liu, C., Liu, J., Li, W., Lu, H., Zhang, Y.
    Journal: Organic Chemistry Frontiers, 2023, 10(20), pp. 5309–5330

Qiang Liu | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Qiang Liu | Organic Chemistry | Best Researcher Award

Collaborative Research and Mentorship:
  • Dr. Liu has a successful history of collaborations, such as his work with Yu Lan, and supervises PhD students, contributing to the growth of young scientists. His collaborative approach strengthens his scientific network and broadens the impact of his research.
Assoc Prof Dr. Qiang Liu , Tsinghua University, China

Profile

Scopus

OrcID

🏛️Early Academic Pursuits

  • Qiang Liu’s academic journey began at Wuhan University, where he earned both his Bachelor’s degree (2007) and Doctorate (2012) from the College of Chemistry and Molecular Sciences. Under the supervision of Prof. Aiwen Lei, his doctoral studies laid the foundation for his later work in metal catalysis and hydride transfer reactions. Following his PhD, Liu expanded his research horizons through a prestigious postdoctoral stint at the Leibniz Institute for Catalysis in Germany, where he worked under the guidance of Prof. Matthias Beller, a world-renowned expert in catalysis.

👨‍🔬 PROFESSIONAL ENDEAVORS

  • In July 2015, Qiang Liu began his independent research career at Tsinghua University, one of China’s top institutions, where he rapidly advanced to the position of tenured Associate Professor and Vice-Chair of the Chemistry Department. His research has consistently been supported by high-profile funding, enabling the successful completion of 11 major research projects. Liu has established collaborations with notable scientists like Yu Lan, contributing to both academic and industry-related consultancy projects.

🏆 CONTRIBUTIONS AND RESEARCH FOCUS

  • Qiang Liu’s primary research focus is the structure, properties, and catalysis of metal-hydride intermediates derived from abundant metals. His work seeks to replace costly, precious metal catalysts with more sustainable, earth-abundant alternatives. Liu’s innovative bimetallic anionic hydride catalysis represents a significant breakthrough, enabling highly selective and efficient (de)hydrogenation reactions. His research has broad applications, from green synthesis to biomass conversion and chemical hydrogen storage.

📊 IMPACT AND INFLUENCE

  • Liu’s work has had a profound impact on the fields of synthetic chemistry and catalysis. His discovery of novel metal hydride systems has opened new avenues for sustainable chemical reactions, positioning him as a leading figure in catalysis research. With 85 peer-reviewed journal articles, including publications in high-impact journals, and an impressive citation index of 9325 with an H-index of 42, his influence continues to grow globally. Liu’s editorial appointments with esteemed journals such as Green Synthesis and Catalysis and the Asian Journal of Organic Chemistry further showcase his leadership within the scientific community.

🏅ACADEMIC CITES

  • With over 9325 citations and an H-index of 42, Qiang Liu’s research has gained substantial recognition. His contributions have consistently been cited in both theoretical and applied catalysis research, underscoring the significance of his work in advancing green chemistry. He has authored and co-authored 85 scientific papers, and his work is frequently referenced by peers aiming to develop more efficient, environmentally friendly catalytic processes.

🚀LEGACY AND FUTURE CONTRIBUTIONS

  • Qiang Liu’s research is paving the way for the future of sustainable chemistry, especially in the areas of biomass conversion and hydrogen storage. His goal is to continue exploring the synergistic interactions between metal hydrides and other catalytic systems to achieve enzyme-like efficiency. With 13 patents and ongoing innovation in metal catalysis, Liu’s work is expected to have a lasting legacy in both academic and industrial sectors. He remains committed to pushing the boundaries of green synthesis and catalysis, with a long-term vision of reducing reliance on precious metals and developing cost-effective, scalable catalytic systems

📄Publications

  • Unveiling the Unique Reactivity of Anionic Mn(I) Complexes via Metal-Ligand Cooperation: Nucleophilic Attack on C(sp3)-X Bonds
    Authors: H. Li, M. Fan, Q. Liu
    Journal: Journal of the American Chemical Society
  • Asymmetric Hydrogenation of Ketimines with Minimally Different Alkyl Groups
    Authors: M. Wang, S. Liu, H. Liu, Y. Lan, Q. Liu
    Journal: Nature
  • Enhancing Hydride Transfer in Catalytic Hydrogenation via σ-Electron-Induced Polarization of Imines
    Authors: S. Liu, H. Yang, Y.-N. Wang, Q. Liu, Y. Lan
    Journal: Journal of the American Chemical Society
  • Manganese-Catalyzed Regioselective Hydroboration of Quinolines via Metal–Ligand Cooperation
    Authors: Y. Wang, H. Li, H. Yang, M. Fan, Q. Liu
    Journal: CCS Chemistry
  • Synergistic Pd/Cu-Catalyzed 1,5-Double Chiral Inductions | 钯/铜双金属协同催化构建 1,5-双手性中心
    Authors: H. Huang, Q. Liu
    Journal: Chinese Journal of Organic Chemistry