Qiang Liu | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Qiang Liu | Organic Chemistry | Best Researcher Award

Collaborative Research and Mentorship:
  • Dr. Liu has a successful history of collaborations, such as his work with Yu Lan, and supervises PhD students, contributing to the growth of young scientists. His collaborative approach strengthens his scientific network and broadens the impact of his research.
Assoc Prof Dr. Qiang Liu , Tsinghua University, China

Profile

Scopus

OrcID

🏛️Early Academic Pursuits

  • Qiang Liu’s academic journey began at Wuhan University, where he earned both his Bachelor’s degree (2007) and Doctorate (2012) from the College of Chemistry and Molecular Sciences. Under the supervision of Prof. Aiwen Lei, his doctoral studies laid the foundation for his later work in metal catalysis and hydride transfer reactions. Following his PhD, Liu expanded his research horizons through a prestigious postdoctoral stint at the Leibniz Institute for Catalysis in Germany, where he worked under the guidance of Prof. Matthias Beller, a world-renowned expert in catalysis.

👨‍🔬 PROFESSIONAL ENDEAVORS

  • In July 2015, Qiang Liu began his independent research career at Tsinghua University, one of China’s top institutions, where he rapidly advanced to the position of tenured Associate Professor and Vice-Chair of the Chemistry Department. His research has consistently been supported by high-profile funding, enabling the successful completion of 11 major research projects. Liu has established collaborations with notable scientists like Yu Lan, contributing to both academic and industry-related consultancy projects.

🏆 CONTRIBUTIONS AND RESEARCH FOCUS

  • Qiang Liu’s primary research focus is the structure, properties, and catalysis of metal-hydride intermediates derived from abundant metals. His work seeks to replace costly, precious metal catalysts with more sustainable, earth-abundant alternatives. Liu’s innovative bimetallic anionic hydride catalysis represents a significant breakthrough, enabling highly selective and efficient (de)hydrogenation reactions. His research has broad applications, from green synthesis to biomass conversion and chemical hydrogen storage.

📊 IMPACT AND INFLUENCE

  • Liu’s work has had a profound impact on the fields of synthetic chemistry and catalysis. His discovery of novel metal hydride systems has opened new avenues for sustainable chemical reactions, positioning him as a leading figure in catalysis research. With 85 peer-reviewed journal articles, including publications in high-impact journals, and an impressive citation index of 9325 with an H-index of 42, his influence continues to grow globally. Liu’s editorial appointments with esteemed journals such as Green Synthesis and Catalysis and the Asian Journal of Organic Chemistry further showcase his leadership within the scientific community.

🏅ACADEMIC CITES

  • With over 9325 citations and an H-index of 42, Qiang Liu’s research has gained substantial recognition. His contributions have consistently been cited in both theoretical and applied catalysis research, underscoring the significance of his work in advancing green chemistry. He has authored and co-authored 85 scientific papers, and his work is frequently referenced by peers aiming to develop more efficient, environmentally friendly catalytic processes.

🚀LEGACY AND FUTURE CONTRIBUTIONS

  • Qiang Liu’s research is paving the way for the future of sustainable chemistry, especially in the areas of biomass conversion and hydrogen storage. His goal is to continue exploring the synergistic interactions between metal hydrides and other catalytic systems to achieve enzyme-like efficiency. With 13 patents and ongoing innovation in metal catalysis, Liu’s work is expected to have a lasting legacy in both academic and industrial sectors. He remains committed to pushing the boundaries of green synthesis and catalysis, with a long-term vision of reducing reliance on precious metals and developing cost-effective, scalable catalytic systems

📄Publications

  • Unveiling the Unique Reactivity of Anionic Mn(I) Complexes via Metal-Ligand Cooperation: Nucleophilic Attack on C(sp3)-X Bonds
    Authors: H. Li, M. Fan, Q. Liu
    Journal: Journal of the American Chemical Society
  • Asymmetric Hydrogenation of Ketimines with Minimally Different Alkyl Groups
    Authors: M. Wang, S. Liu, H. Liu, Y. Lan, Q. Liu
    Journal: Nature
  • Enhancing Hydride Transfer in Catalytic Hydrogenation via σ-Electron-Induced Polarization of Imines
    Authors: S. Liu, H. Yang, Y.-N. Wang, Q. Liu, Y. Lan
    Journal: Journal of the American Chemical Society
  • Manganese-Catalyzed Regioselective Hydroboration of Quinolines via Metal–Ligand Cooperation
    Authors: Y. Wang, H. Li, H. Yang, M. Fan, Q. Liu
    Journal: CCS Chemistry
  • Synergistic Pd/Cu-Catalyzed 1,5-Double Chiral Inductions | 钯/铜双金属协同催化构建 1,5-双手性中心
    Authors: H. Huang, Q. Liu
    Journal: Chinese Journal of Organic Chemistry

Yan Wang | Organic Chemistry | Best Researcher Award

Dr .Yan Wang | Organic Chemistry| Best Researcher Award

Innovative Research:
  •  Wang Yan’s research focuses on a visible-light-driven α-hydroxylation of β-dicarbonyl compounds mediated by NaI/NPh3 or NaI/PPh3 in water. This project highlights her ability to design efficient photocatalytic processes in sustainable, aqueous conditions, contributing to green chemistry advancements.
 Dr . Yan Wang, Ningxia University, China

Profile

Scopus

OrcID

🎓Early Academic Pursuits

  • Wang Yan is currently a doctoral candidate at Ningxia University, focusing on Organic Chemistry under the supervision of Prof. Jinhui Yang. Her research passion has centered around innovative photocatalytic systems, particularly exploring EDA (Electron Donor-Acceptor) complexes. During her PhD journey, Wang Yan has contributed to two important publications on photocatalytic EDA systems, with another compelling paper soon to be released.

💼Professional Endeavors

  • Wang Yan’s professional achievements are highlighted by her work in visible-light-driven α-hydroxylation of β-dicarbonyl compounds. This research, mediated by NaI/NPh3 or NaI/PPh3 in water, has shown significant progress in the realm of aqueous phase photocatalysis. She has also collaborated in institution-land cooperative projects between the Chinese Academy of Engineering and Ningxia.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

  • Wang Yan’s key contribution to organic chemistry lies in the development of an efficient EDA complex system using β-dicarbonyl substrates. Her innovative approach eliminates the need for pre-installed substrates, employing NaI and the cost-effective NPh3. This system not only enhances the EDA photocatalytic process in the aqueous phase but also exhibits excellent oxygen tolerance. Furthermore, the system facilitates the hydrogen evolution reaction and hydration–hydroxylation of β-dicarbonyl derivatives using water as both solvent and oxygen source.

🏆IMPACT AND INFLUENCE

  • Wang Yan’s research has impacted the field of photocatalysis, particularly in promoting eco-friendly and cost-effective approaches in organic chemistry. Her novel work in using non-homogeneous systems and water-based solvents for chemical reactions reflects her commitment to advancing green chemistry initiatives.

🏅ACADEMIC CITES

  • Her work has been recognized in the Chemical Abstracts Service (CAS) citation index, and her articles have been featured in reputable journals such as Organic Chemistry Frontiers. These citations reflect the scientific community’s recognition of her contributions to photocatalysis.

🔮LEGACY AND FUTURE CONTRIBUTIONS

  • Wang Yan aims to continue advancing the field of EDA complexes and photocatalysis. Her future work will likely focus on expanding the practical applications of these systems in industrial and environmental contexts. Through her innovative approaches and dedication, she is poised to make lasting contributions to the field of organic chemistry.

📰PUBLICATIONS

  • Green and efficient synthesis of dibenzyl cyanamides and ureas with cyanamide as a block
    • Authors: Wang, Z.; He, Y.; Wang, F.; Wu, J.; Yang, J.
    • Journal: RSC Advances, 2024, 14(33), pp. 23693–23698
  • Visible-light-driven α-hydroxylation of β-dicarbonyl compounds mediated by NaI/NPh3 or NaI/PPh3 in water
    • Authors: Wang, Y.; Wang, Z.; Luo, H.; Li, D.; Yang, J.
    • Journal: Organic Chemistry Frontiers, 2024
  • KOH-promoted cascade C-Cl bond activation and amidation of trichloromethyl aromatic compounds with formamides in water
    • Authors: Wang, C.; Wang, Y.; Wu, J.; Liang, J.; Yang, J.
    • Journal: Organic and Biomolecular Chemistry, 2023, 21(25), pp. 5185–5188
  • Copper-catalyzed direct synthesis of 3-methylene-2-arylisoindolin-1-ones with calcium carbide as a surrogate of gaseous acetylene
    • Authors: Wu, J.; Ma, Y.; Wang, Y.; Li, D.; Yang, J.
    • Journal: Green Chemistry, 2023, 25(9), pp. 3425–3430
  • Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block | 以氨基氰为原料合成含氮化合物的研究进展
    • Authors: Wu, J.; Wang, Z.; Wang, C.; Li, D.; Yang, J.
    • Journal: Chinese Journal of Organic Chemistry, 2023, 43(2), pp. 436–454