Yunfei Zhang | Organic Chemistry | Best Researcher Award

Assoc Prof Dr.Yunfei Zhang | Organic Chemistry | Best Researcher Award

Training and Continuous Learning:
  • His postdoctoral training with renowned researchers such as Prof. Tristan Lambert, and ongoing collaborations with institutions and industry, indicate his continuous pursuit of cutting-edge research and innovation in his field.
Assoc Prof Dr. Yunfei Zhang, China Agricultural University, China

Profile

Scopus

OrcID

🏛️Early Academic Pursuits

  • Yunfei Zhang began his academic journey at China Agricultural University, earning a B.S. degree in 2013. His passion for organic chemistry led him to pursue a Ph.D. in 2018 under the guidance of Prof. Zhangjie Shi at Peking University. His doctoral studies focused on advanced organic synthesis and catalysis. Following this, he conducted postdoctoral research from 2018 to 2020 with Prof. Tristan Lambert at Cornell University, where he honed his expertise in electrochemical synthesis and transition metal catalysis. His early academic experience laid the foundation for his future research innovations.

👨‍🔬 PROFESSIONAL ENDEAVORS

  • In 2020, Yunfei Zhang joined China Agricultural University as an Associate Professor. Since then, he has led numerous high-impact research projects. His work has been recognized through collaborations with industry leaders such as ExxonMobil, where he explored active nitrogen-containing molecules (Project No. 202304811010385). His academic responsibilities extend beyond research, as he also serves as the English Editor of the Chinese Journal of Pesticide Science, showcasing his editorial skills and commitment to advancing knowledge in his field.

🏆 CONTRIBUTIONS AND RESEARCH FOCUS

  • Yunfei Zhang’s contributions to electrochemical organic synthesis and transition metal catalysis are significant. His notable publications, such as Org. Lett. 2023, 25, 7816-7821 and Org. Lett. 2022, 24, 5762-5766, have received widespread attention. His work in developing electrocatalytic methods, such as cyanidation of carboxylic acids (Patent No. 2022106184802) and synthesis of polysubstituted oxazoles (Patent No. 2022105876971), demonstrates his innovative approach to addressing complex chemical challenges. His research on novel pesticides has also contributed to the advancement of agricultural chemistry, offering sustainable solutions for pest control.

📊 IMPACT AND INFLUENCE

  • Yunfei Zhang’s work has had a significant impact on both academia and industry. His research papers, published in high-ranking journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, and ChemistryViews, have garnered high citations and recognition. Notably, his publication Org. Chem. Front. 2024, DOI: 10.1039/D4QO01381F has been nominated for the “Best Researcher Award” by the CSA Awards Committee, underscoring his influence in the field. Furthermore, his award of the 2025 OBC New Talent and the 2024 Thieme Certificate of Excellent Presentation highlights his standing as an emerging leader in organic chemistry.

🏅ACADEMIC CITES

  • Yunfei Zhang’s research has been widely cited in both academic and industrial contexts. His citation index reflects the importance and relevance of his work, especially in the areas of electrochemical synthesis and transition metal catalysis. His ongoing contributions continue to be a reference point for researchers in the fields of organic chemistry and pesticide development.

🚀LEGACY AND FUTURE CONTRIBUTIONS

  • As an associate professor at China Agricultural University, Yunfei Zhang’s legacy is already evident in his innovative research and industry collaborations. His patents and publications will undoubtedly influence future developments in electrochemical organic synthesis and pesticide chemistry. Looking ahead, his continued focus on sustainable and efficient chemical processes promises to further advance these fields, ensuring his lasting impact on both academic and practical applications.

📄Publications

  • Bio-stimulant based nanodelivery system for pesticides with high adhesion and growth stimulation
    Authors: He, C., Wu, T., Li, J., Zhang, Y., Du, F.
    Journal: Chemical Engineering Journal, 2024, 491, 151904
  • Electrochemical Lactonization Enabled by Unusual Shono-Type Oxidation from Functionalized Benzoic Acids
    Authors: Liu, C., Liu, Y., Yang, S., Zheng, B., Zhang, Y.
    Journal: Organic Letters, 2024, 26(9), pp. 1936–1940
  • Phytosterol organic acid esters: Characterization, anti-inflammatory properties and a delivery strategy to improve mitochondrial function
    Authors: Zou, X., Xu, T., Zhao, T., Zhang, Y., Yang, X.
    Journal: Current Research in Food Science, 2024, 8, 100702
  • Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes
    Authors: Yu, J., Liu, T., Sun, W., Zhang, Y.
    Journal: Organic Letters, 2023, 25(43), pp. 7816–7821
  • Recent advances in electrochemical C-H bond amination
    Authors: Liu, C., Liu, J., Li, W., Lu, H., Zhang, Y.
    Journal: Organic Chemistry Frontiers, 2023, 10(20), pp. 5309–5330

Yan Wang | Organic Chemistry | Best Researcher Award

Dr .Yan Wang | Organic Chemistry| Best Researcher Award

Innovative Research:
  •  Wang Yan’s research focuses on a visible-light-driven α-hydroxylation of β-dicarbonyl compounds mediated by NaI/NPh3 or NaI/PPh3 in water. This project highlights her ability to design efficient photocatalytic processes in sustainable, aqueous conditions, contributing to green chemistry advancements.
 Dr . Yan Wang, Ningxia University, China

Profile

Scopus

OrcID

🎓Early Academic Pursuits

  • Wang Yan is currently a doctoral candidate at Ningxia University, focusing on Organic Chemistry under the supervision of Prof. Jinhui Yang. Her research passion has centered around innovative photocatalytic systems, particularly exploring EDA (Electron Donor-Acceptor) complexes. During her PhD journey, Wang Yan has contributed to two important publications on photocatalytic EDA systems, with another compelling paper soon to be released.

💼Professional Endeavors

  • Wang Yan’s professional achievements are highlighted by her work in visible-light-driven α-hydroxylation of β-dicarbonyl compounds. This research, mediated by NaI/NPh3 or NaI/PPh3 in water, has shown significant progress in the realm of aqueous phase photocatalysis. She has also collaborated in institution-land cooperative projects between the Chinese Academy of Engineering and Ningxia.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

  • Wang Yan’s key contribution to organic chemistry lies in the development of an efficient EDA complex system using β-dicarbonyl substrates. Her innovative approach eliminates the need for pre-installed substrates, employing NaI and the cost-effective NPh3. This system not only enhances the EDA photocatalytic process in the aqueous phase but also exhibits excellent oxygen tolerance. Furthermore, the system facilitates the hydrogen evolution reaction and hydration–hydroxylation of β-dicarbonyl derivatives using water as both solvent and oxygen source.

🏆IMPACT AND INFLUENCE

  • Wang Yan’s research has impacted the field of photocatalysis, particularly in promoting eco-friendly and cost-effective approaches in organic chemistry. Her novel work in using non-homogeneous systems and water-based solvents for chemical reactions reflects her commitment to advancing green chemistry initiatives.

🏅ACADEMIC CITES

  • Her work has been recognized in the Chemical Abstracts Service (CAS) citation index, and her articles have been featured in reputable journals such as Organic Chemistry Frontiers. These citations reflect the scientific community’s recognition of her contributions to photocatalysis.

🔮LEGACY AND FUTURE CONTRIBUTIONS

  • Wang Yan aims to continue advancing the field of EDA complexes and photocatalysis. Her future work will likely focus on expanding the practical applications of these systems in industrial and environmental contexts. Through her innovative approaches and dedication, she is poised to make lasting contributions to the field of organic chemistry.

📰PUBLICATIONS

  • Green and efficient synthesis of dibenzyl cyanamides and ureas with cyanamide as a block
    • Authors: Wang, Z.; He, Y.; Wang, F.; Wu, J.; Yang, J.
    • Journal: RSC Advances, 2024, 14(33), pp. 23693–23698
  • Visible-light-driven α-hydroxylation of β-dicarbonyl compounds mediated by NaI/NPh3 or NaI/PPh3 in water
    • Authors: Wang, Y.; Wang, Z.; Luo, H.; Li, D.; Yang, J.
    • Journal: Organic Chemistry Frontiers, 2024
  • KOH-promoted cascade C-Cl bond activation and amidation of trichloromethyl aromatic compounds with formamides in water
    • Authors: Wang, C.; Wang, Y.; Wu, J.; Liang, J.; Yang, J.
    • Journal: Organic and Biomolecular Chemistry, 2023, 21(25), pp. 5185–5188
  • Copper-catalyzed direct synthesis of 3-methylene-2-arylisoindolin-1-ones with calcium carbide as a surrogate of gaseous acetylene
    • Authors: Wu, J.; Ma, Y.; Wang, Y.; Li, D.; Yang, J.
    • Journal: Green Chemistry, 2023, 25(9), pp. 3425–3430
  • Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block | 以氨基氰为原料合成含氮化合物的研究进展
    • Authors: Wu, J.; Wang, Z.; Wang, C.; Li, D.; Yang, J.
    • Journal: Chinese Journal of Organic Chemistry, 2023, 43(2), pp. 436–454

Fang-Xin Wang | Organic Chemistry | Best Researcher Award

Dr. Fang-Xin Wang | Organic Chemistry | Best Researcher Award

Postdoctoral Research Experience:
  • His postdoctoral research under the guidance of Prof. Yonggui Robin Chi at Nanyang Technological University provided him with international exposure and further honed his expertise. This experience contributes to his current research excellence and innovative approach.
Dr. Fang-Xin Wang, Guangxi Normal University, China

Profile

Scopus

OrcID

🎓Early Academic Pursuits

  • Fang-Xin Wang (王芳昕) began his academic journey in chemistry at Lanzhou University, where he earned his Bachelor of Science (B.S.) degree in 2011. His academic focus deepened when he pursued a Ph.D. under the mentorship of Prof. Chun-An Fan, completing his degree in 2017. During this time, Wang developed a solid foundation in chemical research and gained valuable insights into organic chemistry and related fields.

👩‍🔬Professional Endeavors

  • Upon completing his Ph.D., Fang-Xin Wang expanded his professional experience as a visiting scholar under Prof. Bin Tan at Southern University of Science and Technology. This brief yet significant experience further honed his research abilities. Subsequently, he moved to Singapore for a 4-year postdoctoral position with Prof. Yonggui Robin Chi at Nanyang Technological University. His time there allowed him to engage in high-level research and collaborate with renowned experts, fostering growth in both research methodologies and scientific understanding. In March 2022, he returned to China and began his independent academic career at Guangxi Normal University, specifically at the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

  • Fang-Xin Wang’s research contributions are particularly significant in the areas of organic synthesis and medicinal chemistry. His primary focus areas include:
    1. Total Synthesis of Natural Products and Functional Molecules: He emphasizes synthesizing complex natural compounds and biologically active molecules that possess unique structural characteristics. His work aims to explore the pharmacological potential and functional applications of these molecules.
    2. Methodology Development: Wang is devoted to developing innovative synthetic methodologies that enhance the atom- and step-economy of chemical processes. His work in this area is aimed at streamlining chemical reactions and reducing waste, making organic synthesis more efficient and sustainable.

🌍Impact and Influence

  • Through his academic endeavors, Fang-Xin Wang has made notable contributions to the fields of chemistry and medicinal resources. His research has the potential to influence drug discovery, with a particular emphasis on creating biologically relevant molecules that could serve as therapeutic agents. By improving synthetic methodologies, Wang has contributed to advancements in chemical processes that could be widely adopted in both academia and industry.

🏅ACADEMIC CITES AND RECOGNITION

Although early in his independent academic career, Fang-Xin Wang’s research output has already gained attention. His publications and contributions are beginning to accumulate citations in leading scientific journals. These citations reflect the growing recognition of his work and its relevance to the broader scientific community. His contributions to both organic chemistry and natural product synthesis are likely to leave a lasting legacy in the field.

🌍FUTURE CONTRIBUTIONS

  • As a young and dynamic researcher, Fang-Xin Wang is expected to continue making substantial contributions to his field. His future research may lead to breakthroughs in medicinal chemistry and the development of novel synthetic methodologies. His potential to shape the next generation of organic chemists and advance scientific knowledge is promising. Through his ongoing work at Guangxi Normal University, he will likely build a legacy as a pioneer in total synthesis and a leader in sustainable chemical processes.

📰PUBLICATIONS

  • Total Synthesis of Quebrachamine and Kopsiyunnanine D
    Authors: Hui Liu, Wei Yuan, Meng-Yan Ran, Gang Wei, Yi Zhao, Zhi-Qiang Liao, Hong Liang, Zhen-Feng Chen, Fang-Xin Wang
    Journal: The Journal of Organic Chemistry
  •  Divergent Syntheses of (−)-Carvone-Derived Dimers
    Authors: Jia-Jia Liu, Bao-Qi Zhang, Kun She, Jiao Ran, Hui-Fang Li, Heng-Shan Wang, Fang-Xin Wang
    Journal: Tetrahedron
  •  Design and Synthesis of Novel Indole Ethylamine Derivatives as a Lipid Metabolism Regulator Targeting PPARα/CPT1 in AML12 Cells
    Authors: Yu-Chen Liu, Gang Wei, Zhi-Qiang Liao, Fang-Xin Wang, Chunxiao Zong, Jiannan Qiu, Yifei Le, Zhi-Ling Yu, Seo Young Yang, Heng-Shan Wang, et al.
    Journal: Molecules
  • Assembly of Multicyclic Isoquinoline Scaffolds from Pyridines: Formal Total Synthesis of Fredericamycin A
    Authors: Fang-Xin Wang, Jia-Lei Yan, Zhixin Liu, Tingshun Zhu, Yingguo Liu, Shi-Chao Ren, Wen-Xin Lv, Zhichao Jin, Yonggui Robin Chi
    Journal: Chemical Science
  •  Carbene-Catalyzed Alkylation of Carboxylic Esters via Direct Photoexcitation of Acyl Azolium Intermediates
    Authors: Shi-Chao Ren, Wen-Xin Lv, Xing Yang, Jia-Lei Yan, Jun Xu, Fang-Xin Wang, Lin Hao, Huifang Chai, Zhichao Jin, Yonggui Robin Chi
    Journal: ACS Catalysis