Yunfei Zhang | Organic Chemistry | Best Researcher Award

Assoc Prof Dr.Yunfei Zhang | Organic Chemistry | Best Researcher Award

Training and Continuous Learning:
  • His postdoctoral training with renowned researchers such as Prof. Tristan Lambert, and ongoing collaborations with institutions and industry, indicate his continuous pursuit of cutting-edge research and innovation in his field.
Assoc Prof Dr. Yunfei Zhang, China Agricultural University, China

Profile

Scopus

OrcID

🏛️Early Academic Pursuits

  • Yunfei Zhang began his academic journey at China Agricultural University, earning a B.S. degree in 2013. His passion for organic chemistry led him to pursue a Ph.D. in 2018 under the guidance of Prof. Zhangjie Shi at Peking University. His doctoral studies focused on advanced organic synthesis and catalysis. Following this, he conducted postdoctoral research from 2018 to 2020 with Prof. Tristan Lambert at Cornell University, where he honed his expertise in electrochemical synthesis and transition metal catalysis. His early academic experience laid the foundation for his future research innovations.

👨‍🔬 PROFESSIONAL ENDEAVORS

  • In 2020, Yunfei Zhang joined China Agricultural University as an Associate Professor. Since then, he has led numerous high-impact research projects. His work has been recognized through collaborations with industry leaders such as ExxonMobil, where he explored active nitrogen-containing molecules (Project No. 202304811010385). His academic responsibilities extend beyond research, as he also serves as the English Editor of the Chinese Journal of Pesticide Science, showcasing his editorial skills and commitment to advancing knowledge in his field.

🏆 CONTRIBUTIONS AND RESEARCH FOCUS

  • Yunfei Zhang’s contributions to electrochemical organic synthesis and transition metal catalysis are significant. His notable publications, such as Org. Lett. 2023, 25, 7816-7821 and Org. Lett. 2022, 24, 5762-5766, have received widespread attention. His work in developing electrocatalytic methods, such as cyanidation of carboxylic acids (Patent No. 2022106184802) and synthesis of polysubstituted oxazoles (Patent No. 2022105876971), demonstrates his innovative approach to addressing complex chemical challenges. His research on novel pesticides has also contributed to the advancement of agricultural chemistry, offering sustainable solutions for pest control.

📊 IMPACT AND INFLUENCE

  • Yunfei Zhang’s work has had a significant impact on both academia and industry. His research papers, published in high-ranking journals such as Organic Chemistry Frontiers, Journal of Organic Chemistry, and ChemistryViews, have garnered high citations and recognition. Notably, his publication Org. Chem. Front. 2024, DOI: 10.1039/D4QO01381F has been nominated for the “Best Researcher Award” by the CSA Awards Committee, underscoring his influence in the field. Furthermore, his award of the 2025 OBC New Talent and the 2024 Thieme Certificate of Excellent Presentation highlights his standing as an emerging leader in organic chemistry.

🏅ACADEMIC CITES

  • Yunfei Zhang’s research has been widely cited in both academic and industrial contexts. His citation index reflects the importance and relevance of his work, especially in the areas of electrochemical synthesis and transition metal catalysis. His ongoing contributions continue to be a reference point for researchers in the fields of organic chemistry and pesticide development.

🚀LEGACY AND FUTURE CONTRIBUTIONS

  • As an associate professor at China Agricultural University, Yunfei Zhang’s legacy is already evident in his innovative research and industry collaborations. His patents and publications will undoubtedly influence future developments in electrochemical organic synthesis and pesticide chemistry. Looking ahead, his continued focus on sustainable and efficient chemical processes promises to further advance these fields, ensuring his lasting impact on both academic and practical applications.

📄Publications

  • Bio-stimulant based nanodelivery system for pesticides with high adhesion and growth stimulation
    Authors: He, C., Wu, T., Li, J., Zhang, Y., Du, F.
    Journal: Chemical Engineering Journal, 2024, 491, 151904
  • Electrochemical Lactonization Enabled by Unusual Shono-Type Oxidation from Functionalized Benzoic Acids
    Authors: Liu, C., Liu, Y., Yang, S., Zheng, B., Zhang, Y.
    Journal: Organic Letters, 2024, 26(9), pp. 1936–1940
  • Phytosterol organic acid esters: Characterization, anti-inflammatory properties and a delivery strategy to improve mitochondrial function
    Authors: Zou, X., Xu, T., Zhao, T., Zhang, Y., Yang, X.
    Journal: Current Research in Food Science, 2024, 8, 100702
  • Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes
    Authors: Yu, J., Liu, T., Sun, W., Zhang, Y.
    Journal: Organic Letters, 2023, 25(43), pp. 7816–7821
  • Recent advances in electrochemical C-H bond amination
    Authors: Liu, C., Liu, J., Li, W., Lu, H., Zhang, Y.
    Journal: Organic Chemistry Frontiers, 2023, 10(20), pp. 5309–5330

Qiang Liu | Organic Chemistry | Best Researcher Award

Assoc Prof Dr. Qiang Liu | Organic Chemistry | Best Researcher Award

Collaborative Research and Mentorship:
  • Dr. Liu has a successful history of collaborations, such as his work with Yu Lan, and supervises PhD students, contributing to the growth of young scientists. His collaborative approach strengthens his scientific network and broadens the impact of his research.
Assoc Prof Dr. Qiang Liu , Tsinghua University, China

Profile

Scopus

OrcID

🏛️Early Academic Pursuits

  • Qiang Liu’s academic journey began at Wuhan University, where he earned both his Bachelor’s degree (2007) and Doctorate (2012) from the College of Chemistry and Molecular Sciences. Under the supervision of Prof. Aiwen Lei, his doctoral studies laid the foundation for his later work in metal catalysis and hydride transfer reactions. Following his PhD, Liu expanded his research horizons through a prestigious postdoctoral stint at the Leibniz Institute for Catalysis in Germany, where he worked under the guidance of Prof. Matthias Beller, a world-renowned expert in catalysis.

👨‍🔬 PROFESSIONAL ENDEAVORS

  • In July 2015, Qiang Liu began his independent research career at Tsinghua University, one of China’s top institutions, where he rapidly advanced to the position of tenured Associate Professor and Vice-Chair of the Chemistry Department. His research has consistently been supported by high-profile funding, enabling the successful completion of 11 major research projects. Liu has established collaborations with notable scientists like Yu Lan, contributing to both academic and industry-related consultancy projects.

🏆 CONTRIBUTIONS AND RESEARCH FOCUS

  • Qiang Liu’s primary research focus is the structure, properties, and catalysis of metal-hydride intermediates derived from abundant metals. His work seeks to replace costly, precious metal catalysts with more sustainable, earth-abundant alternatives. Liu’s innovative bimetallic anionic hydride catalysis represents a significant breakthrough, enabling highly selective and efficient (de)hydrogenation reactions. His research has broad applications, from green synthesis to biomass conversion and chemical hydrogen storage.

📊 IMPACT AND INFLUENCE

  • Liu’s work has had a profound impact on the fields of synthetic chemistry and catalysis. His discovery of novel metal hydride systems has opened new avenues for sustainable chemical reactions, positioning him as a leading figure in catalysis research. With 85 peer-reviewed journal articles, including publications in high-impact journals, and an impressive citation index of 9325 with an H-index of 42, his influence continues to grow globally. Liu’s editorial appointments with esteemed journals such as Green Synthesis and Catalysis and the Asian Journal of Organic Chemistry further showcase his leadership within the scientific community.

🏅ACADEMIC CITES

  • With over 9325 citations and an H-index of 42, Qiang Liu’s research has gained substantial recognition. His contributions have consistently been cited in both theoretical and applied catalysis research, underscoring the significance of his work in advancing green chemistry. He has authored and co-authored 85 scientific papers, and his work is frequently referenced by peers aiming to develop more efficient, environmentally friendly catalytic processes.

🚀LEGACY AND FUTURE CONTRIBUTIONS

  • Qiang Liu’s research is paving the way for the future of sustainable chemistry, especially in the areas of biomass conversion and hydrogen storage. His goal is to continue exploring the synergistic interactions between metal hydrides and other catalytic systems to achieve enzyme-like efficiency. With 13 patents and ongoing innovation in metal catalysis, Liu’s work is expected to have a lasting legacy in both academic and industrial sectors. He remains committed to pushing the boundaries of green synthesis and catalysis, with a long-term vision of reducing reliance on precious metals and developing cost-effective, scalable catalytic systems

📄Publications

  • Unveiling the Unique Reactivity of Anionic Mn(I) Complexes via Metal-Ligand Cooperation: Nucleophilic Attack on C(sp3)-X Bonds
    Authors: H. Li, M. Fan, Q. Liu
    Journal: Journal of the American Chemical Society
  • Asymmetric Hydrogenation of Ketimines with Minimally Different Alkyl Groups
    Authors: M. Wang, S. Liu, H. Liu, Y. Lan, Q. Liu
    Journal: Nature
  • Enhancing Hydride Transfer in Catalytic Hydrogenation via σ-Electron-Induced Polarization of Imines
    Authors: S. Liu, H. Yang, Y.-N. Wang, Q. Liu, Y. Lan
    Journal: Journal of the American Chemical Society
  • Manganese-Catalyzed Regioselective Hydroboration of Quinolines via Metal–Ligand Cooperation
    Authors: Y. Wang, H. Li, H. Yang, M. Fan, Q. Liu
    Journal: CCS Chemistry
  • Synergistic Pd/Cu-Catalyzed 1,5-Double Chiral Inductions | 钯/铜双金属协同催化构建 1,5-双手性中心
    Authors: H. Huang, Q. Liu
    Journal: Chinese Journal of Organic Chemistry

Fang-Xin Wang | Organic Chemistry | Best Researcher Award

Dr. Fang-Xin Wang | Organic Chemistry | Best Researcher Award

Postdoctoral Research Experience:
  • His postdoctoral research under the guidance of Prof. Yonggui Robin Chi at Nanyang Technological University provided him with international exposure and further honed his expertise. This experience contributes to his current research excellence and innovative approach.
Dr. Fang-Xin Wang, Guangxi Normal University, China

Profile

Scopus

OrcID

🎓Early Academic Pursuits

  • Fang-Xin Wang (王芳昕) began his academic journey in chemistry at Lanzhou University, where he earned his Bachelor of Science (B.S.) degree in 2011. His academic focus deepened when he pursued a Ph.D. under the mentorship of Prof. Chun-An Fan, completing his degree in 2017. During this time, Wang developed a solid foundation in chemical research and gained valuable insights into organic chemistry and related fields.

👩‍🔬Professional Endeavors

  • Upon completing his Ph.D., Fang-Xin Wang expanded his professional experience as a visiting scholar under Prof. Bin Tan at Southern University of Science and Technology. This brief yet significant experience further honed his research abilities. Subsequently, he moved to Singapore for a 4-year postdoctoral position with Prof. Yonggui Robin Chi at Nanyang Technological University. His time there allowed him to engage in high-level research and collaborate with renowned experts, fostering growth in both research methodologies and scientific understanding. In March 2022, he returned to China and began his independent academic career at Guangxi Normal University, specifically at the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

  • Fang-Xin Wang’s research contributions are particularly significant in the areas of organic synthesis and medicinal chemistry. His primary focus areas include:
    1. Total Synthesis of Natural Products and Functional Molecules: He emphasizes synthesizing complex natural compounds and biologically active molecules that possess unique structural characteristics. His work aims to explore the pharmacological potential and functional applications of these molecules.
    2. Methodology Development: Wang is devoted to developing innovative synthetic methodologies that enhance the atom- and step-economy of chemical processes. His work in this area is aimed at streamlining chemical reactions and reducing waste, making organic synthesis more efficient and sustainable.

🌍Impact and Influence

  • Through his academic endeavors, Fang-Xin Wang has made notable contributions to the fields of chemistry and medicinal resources. His research has the potential to influence drug discovery, with a particular emphasis on creating biologically relevant molecules that could serve as therapeutic agents. By improving synthetic methodologies, Wang has contributed to advancements in chemical processes that could be widely adopted in both academia and industry.

🏅ACADEMIC CITES AND RECOGNITION

Although early in his independent academic career, Fang-Xin Wang’s research output has already gained attention. His publications and contributions are beginning to accumulate citations in leading scientific journals. These citations reflect the growing recognition of his work and its relevance to the broader scientific community. His contributions to both organic chemistry and natural product synthesis are likely to leave a lasting legacy in the field.

🌍FUTURE CONTRIBUTIONS

  • As a young and dynamic researcher, Fang-Xin Wang is expected to continue making substantial contributions to his field. His future research may lead to breakthroughs in medicinal chemistry and the development of novel synthetic methodologies. His potential to shape the next generation of organic chemists and advance scientific knowledge is promising. Through his ongoing work at Guangxi Normal University, he will likely build a legacy as a pioneer in total synthesis and a leader in sustainable chemical processes.

📰PUBLICATIONS

  • Total Synthesis of Quebrachamine and Kopsiyunnanine D
    Authors: Hui Liu, Wei Yuan, Meng-Yan Ran, Gang Wei, Yi Zhao, Zhi-Qiang Liao, Hong Liang, Zhen-Feng Chen, Fang-Xin Wang
    Journal: The Journal of Organic Chemistry
  •  Divergent Syntheses of (−)-Carvone-Derived Dimers
    Authors: Jia-Jia Liu, Bao-Qi Zhang, Kun She, Jiao Ran, Hui-Fang Li, Heng-Shan Wang, Fang-Xin Wang
    Journal: Tetrahedron
  •  Design and Synthesis of Novel Indole Ethylamine Derivatives as a Lipid Metabolism Regulator Targeting PPARα/CPT1 in AML12 Cells
    Authors: Yu-Chen Liu, Gang Wei, Zhi-Qiang Liao, Fang-Xin Wang, Chunxiao Zong, Jiannan Qiu, Yifei Le, Zhi-Ling Yu, Seo Young Yang, Heng-Shan Wang, et al.
    Journal: Molecules
  • Assembly of Multicyclic Isoquinoline Scaffolds from Pyridines: Formal Total Synthesis of Fredericamycin A
    Authors: Fang-Xin Wang, Jia-Lei Yan, Zhixin Liu, Tingshun Zhu, Yingguo Liu, Shi-Chao Ren, Wen-Xin Lv, Zhichao Jin, Yonggui Robin Chi
    Journal: Chemical Science
  •  Carbene-Catalyzed Alkylation of Carboxylic Esters via Direct Photoexcitation of Acyl Azolium Intermediates
    Authors: Shi-Chao Ren, Wen-Xin Lv, Xing Yang, Jia-Lei Yan, Jun Xu, Fang-Xin Wang, Lin Hao, Huifang Chai, Zhichao Jin, Yonggui Robin Chi
    Journal: ACS Catalysis